Documentation

Mathlib.AlgebraicGeometry.Cover.Open

Open covers of schemes #

This file provides the basic API for open covers of schemes.

Main definition #

@[reducible, inline]

An open cover of a scheme X is a cover where all component maps are open immersions.

Equations
Instances For
    @[deprecated AlgebraicGeometry.Scheme.Cover.covers]

    Alias of AlgebraicGeometry.Scheme.Cover.covers.


    the components cover X

    @[deprecated AlgebraicGeometry.Scheme.Cover.map_prop]

    Alias of AlgebraicGeometry.Scheme.Cover.map_prop.


    the component maps satisfy P

    The affine cover of a scheme.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • AlgebraicGeometry.Scheme.instInhabitedOpenCover = { default := X.affineCover }
      def AlgebraicGeometry.Scheme.OpenCover.finiteSubcover {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [H : CompactSpace X.toPresheafedSpace] :
      X.OpenCover

      Every open cover of a quasi-compact scheme can be refined into a finite subcover.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_map {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [H : CompactSpace X.toPresheafedSpace] (x : { x : X.toPresheafedSpace // x .choose }) :
        𝒰.finiteSubcover.map x = 𝒰.map (𝒰.f x)
        @[simp]
        theorem AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_obj {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [H : CompactSpace X.toPresheafedSpace] (x : { x : X.toPresheafedSpace // x .choose }) :
        𝒰.finiteSubcover.obj x = 𝒰.obj (𝒰.f x)
        instance AlgebraicGeometry.Scheme.instFintypeJIsOpenImmersionFiniteSubcover {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [H : CompactSpace X.toPresheafedSpace] :
        Fintype 𝒰.finiteSubcover.J
        Equations
        theorem AlgebraicGeometry.Scheme.OpenCover.compactSpace {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) [Finite 𝒰.J] [H : ∀ (i : 𝒰.J), CompactSpace (𝒰.obj i).toPresheafedSpace] :
        CompactSpace X.toPresheafedSpace
        @[reducible, inline]

        An affine open cover of X consists of a family of open immersions into X from spectra of rings.

        Equations
        Instances For
          def AlgebraicGeometry.Scheme.AffineOpenCover.openCover {X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) :
          X.OpenCover

          The open cover associated to an affine open cover.

          Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.AffineOpenCover.openCover_obj {X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) (j : 𝒰.J) :
            𝒰.openCover.obj j = AlgebraicGeometry.Spec (𝒰.obj j)
            @[simp]
            theorem AlgebraicGeometry.Scheme.AffineOpenCover.openCover_J {X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) :
            𝒰.openCover.J = 𝒰.J
            @[simp]
            theorem AlgebraicGeometry.Scheme.AffineOpenCover.openCover_map {X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) (j : 𝒰.J) :
            𝒰.openCover.map j = 𝒰.map j
            @[simp]
            theorem AlgebraicGeometry.Scheme.AffineOpenCover.openCover_f {X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) (x : X.toPresheafedSpace) :
            𝒰.openCover.f x = 𝒰.f x
            @[simp]
            theorem AlgebraicGeometry.Scheme.AffineOpenCover.openCover_covers {X : AlgebraicGeometry.Scheme} (𝒰 : X.AffineOpenCover) (x : X.toPresheafedSpace) :
            =

            A choice of an affine open cover of a scheme.

            Equations
            • X.affineOpenCover = { J := X.affineCover.J, obj := fun (j : X.affineCover.J) => .choose, map := X.affineCover.map, f := X.affineCover.f, covers := , map_prop := }
            Instances For
              @[simp]
              theorem AlgebraicGeometry.Scheme.affineOpenCover_map (X : AlgebraicGeometry.Scheme) (j : X.affineCover.J) :
              X.affineOpenCover.map j = X.affineCover.map j
              @[simp]
              theorem AlgebraicGeometry.Scheme.affineOpenCover_obj (X : AlgebraicGeometry.Scheme) (j : X.affineCover.J) :
              X.affineOpenCover.obj j = .choose
              @[simp]
              theorem AlgebraicGeometry.Scheme.affineOpenCover_J (X : AlgebraicGeometry.Scheme) :
              X.affineOpenCover.J = X.affineCover.J
              @[simp]
              theorem AlgebraicGeometry.Scheme.affineOpenCover_f (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) :
              X.affineOpenCover.f x = X.affineCover.f x
              @[simp]
              theorem AlgebraicGeometry.Scheme.openCover_affineOpenCover (X : AlgebraicGeometry.Scheme) :
              X.affineOpenCover.openCover = X.affineCover
              def AlgebraicGeometry.Scheme.OpenCover.affineRefinement {X : AlgebraicGeometry.Scheme} (𝓤 : X.OpenCover) :
              X.AffineOpenCover

              Given any open cover 𝓤, this is an affine open cover which refines it. The morphism in the category of open covers which proves that this is indeed a refinement, see AlgebraicGeometry.Scheme.OpenCover.fromAffineRefinement.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso {X Y : AlgebraicGeometry.Scheme} (f : X Y) (𝒰 : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover 𝒰.affineRefinement.openCover f).J) :
                (AlgebraicGeometry.Scheme.Cover.pullbackCover 𝒰.affineRefinement.openCover f).obj i (AlgebraicGeometry.Scheme.Cover.pullbackCover (𝒰.obj i.fst).affineCover (AlgebraicGeometry.Scheme.Cover.pullbackHom 𝒰 f i.fst)).obj i.snd

                The pullback of the affine refinement is the pullback of the affine cover.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  noncomputable def AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop {R : CommRingCat} {ι : Type u_1} (s : ιR) (hs : Ideal.span (Set.range s) = ) :
                  (AlgebraicGeometry.Spec R).AffineOpenCover

                  A family of elements spanning the unit ideal of R gives a affine open cover of Spec R.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop_f {R : CommRingCat} {ι : Type u_1} (s : ιR) (hs : Ideal.span (Set.range s) = ) (x : (AlgebraicGeometry.Spec R).toPresheafedSpace) :
                    (AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop s hs).f x = let_fun this := ; this.choose
                    def AlgebraicGeometry.Scheme.OpenCover.fromAffineRefinement {X : AlgebraicGeometry.Scheme} (𝓤 : X.OpenCover) :
                    𝓤.affineRefinement.openCover 𝓤

                    Given any open cover 𝓤, this is an affine open cover which refines it.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem AlgebraicGeometry.Scheme.OpenCover.ext_elem {X : AlgebraicGeometry.Scheme} {U : X.Opens} (f g : (X.presheaf.obj (Opposite.op U))) (𝒰 : X.OpenCover) (h : ∀ (i : 𝒰.J), (AlgebraicGeometry.Scheme.Hom.app (𝒰.map i) U).hom f = (AlgebraicGeometry.Scheme.Hom.app (𝒰.map i) U).hom g) :
                      f = g

                      If two global sections agree after restriction to each member of an open cover, then they agree globally.

                      theorem AlgebraicGeometry.Scheme.zero_of_zero_cover {X : AlgebraicGeometry.Scheme} {U : X.Opens} (s : (X.presheaf.obj (Opposite.op U))) (𝒰 : X.OpenCover) (h : ∀ (i : 𝒰.J), (AlgebraicGeometry.Scheme.Hom.app (𝒰.map i) U).hom s = 0) :
                      s = 0

                      If the restriction of a global section to each member of an open cover is zero, then it is globally zero.

                      theorem AlgebraicGeometry.Scheme.isNilpotent_of_isNilpotent_cover {X : AlgebraicGeometry.Scheme} {U : X.Opens} (s : (X.presheaf.obj (Opposite.op U))) (𝒰 : X.OpenCover) [Finite 𝒰.J] (h : ∀ (i : 𝒰.J), IsNilpotent ((AlgebraicGeometry.Scheme.Hom.app (𝒰.map i) U).hom s)) :

                      If a global section is nilpotent on each member of a finite open cover, then f is nilpotent.

                      The basic open sets form an affine open cover of Spec R.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        We may bind the basic open sets of an open affine cover to form an affine cover that is also a basis.

                        Equations
                        Instances For

                          The coordinate ring of a component in the affine_basis_cover.

                          Equations
                          Instances For
                            theorem AlgebraicGeometry.Scheme.affineBasisCover_obj (X : AlgebraicGeometry.Scheme) (i : X.affineBasisCover.J) :
                            X.affineBasisCover.obj i = AlgebraicGeometry.Spec (X.affineBasisCoverRing i)
                            theorem AlgebraicGeometry.Scheme.affineBasisCover_map_range (X : AlgebraicGeometry.Scheme) (x : X.toPresheafedSpace) (r : .choose) :
                            Set.range (X.affineBasisCover.map x, r).base = (X.affineCover.map x).base '' (PrimeSpectrum.basicOpen r).carrier
                            theorem AlgebraicGeometry.Scheme.affineBasisCover_is_basis (X : AlgebraicGeometry.Scheme) :
                            TopologicalSpace.IsTopologicalBasis {x : Set X.toPresheafedSpace | ∃ (a : X.affineBasisCover.J), x = Set.range (X.affineBasisCover.map a).base}