Documentation

Mathlib.AlgebraicGeometry.Scheme

The category of schemes #

A scheme is a locally ringed space such that every point is contained in some open set where there is an isomorphism of presheaves between the restriction to that open set, and the structure sheaf of Spec R, for some commutative ring R.

A morphism of schemes is just a morphism of the underlying locally ringed spaces.

We define Scheme as an X : LocallyRingedSpace, along with a proof that every point has an open neighbourhood U so that the restriction of X to U is isomorphic, as a locally ringed space, to Spec.toLocallyRingedSpace.obj (op R) for some R : CommRingCat.

Instances For
    @[reducible, inline]

    The type of open sets of a scheme.

    Equations
    Instances For
      structure AlgebraicGeometry.Scheme.Hom (X Y : Scheme) extends X.Hom Y.toLocallyRingedSpace :
      Type u_1

      A morphism between schemes is a morphism between the underlying locally ringed spaces.

      Instances For
        @[reducible, inline]
        abbrev AlgebraicGeometry.Scheme.Hom.toLRSHom {X Y : Scheme} (f : X.Hom Y) :
        X.toLocallyRingedSpace Y.toLocallyRingedSpace

        Cast a morphism of schemes into morphisms of local ringed spaces.

        Equations
        • f.toLRSHom = f.toHom_1
        Instances For
          def AlgebraicGeometry.Scheme.Hom.Simps.toLRSHom {X Y : Scheme} (f : X.Hom Y) :
          X.toLocallyRingedSpace Y.toLocallyRingedSpace

          See Note [custom simps projection]

          Equations
          Instances For

            Schemes are a full subcategory of locally ringed spaces.

            Equations
            • One or more equations did not get rendered due to their size.

            Pretty printer defined by notation3 command.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              f ⁻¹ᵁ U is notation for (Opens.map f.base).obj U, the preimage of an open set U under f.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Pretty printer defined by notation3 command.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Γ(X, U) is notation for X.presheaf.obj (op U).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem AlgebraicGeometry.Scheme.Hom.continuous {X Y : Scheme} (f : X.Hom Y) :
                    Continuous f.base
                    @[reducible, inline]
                    abbrev AlgebraicGeometry.Scheme.sheaf (X : Scheme) :
                    TopCat.Sheaf CommRingCat X.toPresheafedSpace

                    The structure sheaf of a scheme.

                    Equations
                    • X.sheaf = X.sheaf
                    Instances For
                      @[reducible, inline]
                      abbrev AlgebraicGeometry.Scheme.Hom.app {X Y : Scheme} (f : X.Hom Y) (U : Y.Opens) :
                      Y.presheaf.obj (Opposite.op U) X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj U))

                      Given a morphism of schemes f : X ⟶ Y, and open U ⊆ Y, this is the induced map Γ(Y, U) ⟶ Γ(X, f ⁻¹ᵁ U).

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev AlgebraicGeometry.Scheme.Hom.appTop {X Y : Scheme} (f : X.Hom Y) :
                        Y.presheaf.obj (Opposite.op ) X.presheaf.obj (Opposite.op )

                        Given a morphism of schemes f : X ⟶ Y, this is the induced map Γ(Y, ⊤) ⟶ Γ(X, ⊤).

                        Equations
                        • f.appTop = f.app
                        Instances For
                          theorem AlgebraicGeometry.Scheme.Hom.naturality {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} (i : Opposite.op U' Opposite.op U) :
                          CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (f.app U) = CategoryTheory.CategoryStruct.comp (f.app U') (X.presheaf.map ((TopologicalSpace.Opens.map f.base).map i.unop).op)
                          theorem AlgebraicGeometry.Scheme.Hom.naturality_assoc {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} (i : Opposite.op U' Opposite.op U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj U)) Z) :
                          def AlgebraicGeometry.Scheme.Hom.appLE {X Y : Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V (TopologicalSpace.Opens.map f.base).obj U) :
                          Y.presheaf.obj (Opposite.op U) X.presheaf.obj (Opposite.op V)

                          Given a morphism of schemes f : X ⟶ Y, and open sets U ⊆ Y, V ⊆ f ⁻¹' U, this is the induced map Γ(Y, U) ⟶ Γ(X, V).

                          Equations
                          Instances For
                            @[simp]
                            theorem AlgebraicGeometry.Scheme.Hom.appLE_map {X Y : Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op V Opposite.op V') :
                            CategoryTheory.CategoryStruct.comp (f.appLE U V e) (X.presheaf.map i) = f.appLE U V'
                            @[simp]
                            theorem AlgebraicGeometry.Scheme.Hom.appLE_map_assoc {X Y : Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op V Opposite.op V') {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V') Z) :
                            theorem AlgebraicGeometry.Scheme.Hom.appLE_map' {X Y : Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V = V') :
                            CategoryTheory.CategoryStruct.comp (f.appLE U V' ) (X.presheaf.map (CategoryTheory.eqToHom i).op) = f.appLE U V e
                            theorem AlgebraicGeometry.Scheme.Hom.appLE_map'_assoc {X Y : Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V = V') {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) Z) :
                            @[simp]
                            theorem AlgebraicGeometry.Scheme.Hom.map_appLE {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op U' Opposite.op U) :
                            CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (f.appLE U V e) = f.appLE U' V
                            @[simp]
                            theorem AlgebraicGeometry.Scheme.Hom.map_appLE_assoc {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op U' Opposite.op U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) Z) :
                            theorem AlgebraicGeometry.Scheme.Hom.map_appLE' {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U' = U) :
                            CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom i).op) (f.appLE U' V ) = f.appLE U V e
                            theorem AlgebraicGeometry.Scheme.Hom.map_appLE'_assoc {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U' = U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) Z) :
                            theorem AlgebraicGeometry.Scheme.Hom.app_eq_appLE {X Y : Scheme} (f : X.Hom Y) {U : Y.Opens} :
                            f.app U = f.appLE U ((TopologicalSpace.Opens.map f.base).obj U)
                            theorem AlgebraicGeometry.Scheme.Hom.appLE_eq_app {X Y : Scheme} (f : X.Hom Y) {U : Y.Opens} :
                            f.appLE U ((TopologicalSpace.Opens.map f.base).obj U) = f.app U
                            theorem AlgebraicGeometry.Scheme.Hom.appLE_congr {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : {R S : CommRingCat} → (R S)Prop) :
                            P (f.appLE U V e) P (f.appLE U' V' )
                            def AlgebraicGeometry.Scheme.Hom.stalkMap {X Y : Scheme} (f : X.Hom Y) (x : X.toPresheafedSpace) :
                            Y.presheaf.stalk (f.base x) X.presheaf.stalk x

                            A morphism of schemes f : X ⟶ Y induces a local ring homomorphism from Y.presheaf.stalk (f x) to X.presheaf.stalk x for any x : X.

                            Equations
                            Instances For
                              theorem AlgebraicGeometry.Scheme.Hom.ext {X Y : Scheme} {f g : X Y} (h_base : f.base = g.base) (h_app : ∀ (U : Y.Opens), CategoryTheory.CategoryStruct.comp (app f U) (X.presheaf.map (CategoryTheory.eqToHom ).op) = app g U) :
                              f = g
                              theorem AlgebraicGeometry.Scheme.Hom.ext' {X Y : Scheme} {f g : X Y} (h : toLRSHom f = toLRSHom g) :
                              f = g

                              An alternative ext lemma for scheme morphisms.

                              theorem AlgebraicGeometry.Scheme.Hom.preimage_iSup {X Y : Scheme} (f : X.Hom Y) {ι : Sort u_1} (U : ιY.Opens) :
                              (TopologicalSpace.Opens.map f.base).obj (iSup U) = ⨆ (i : ι), (TopologicalSpace.Opens.map f.base).obj (U i)
                              theorem AlgebraicGeometry.Scheme.Hom.preimage_iSup_eq_top {X Y : Scheme} (f : X.Hom Y) {ι : Sort u_1} {U : ιY.Opens} (hU : iSup U = ) :
                              ⨆ (i : ι), (TopologicalSpace.Opens.map f.base).obj (U i) =
                              theorem AlgebraicGeometry.Scheme.Hom.preimage_le_preimage_of_le {X Y : Scheme} (f : X.Hom Y) {U U' : Y.Opens} (hUU' : U U') :
                              @[simp]
                              theorem AlgebraicGeometry.Scheme.preimage_comp {X Y Z : Scheme} (f : X Y) (g : Y Z) (U : Z.Opens) :

                              The forgetful functor from Scheme to LocallyRingedSpace.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                @[simp]
                                theorem AlgebraicGeometry.Scheme.forgetToLocallyRingedSpace_map {X✝ Y✝ : Scheme} (f : X✝.Hom Y✝) :
                                forgetToLocallyRingedSpace.map f = f.toLRSHom

                                The forget functor Scheme ⥤ LocallyRingedSpace is fully faithful.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem AlgebraicGeometry.Scheme.fullyFaithfulForgetToLocallyRingedSpace_preimage_toLRSHom {X✝ Y✝ : Scheme} (toHom_1 : X✝.Hom Y✝.toLocallyRingedSpace) :
                                  @[simp]
                                  noncomputable def AlgebraicGeometry.Scheme.homeoOfIso {X Y : Scheme} (e : X Y) :
                                  X.toPresheafedSpace ≃ₜ Y.toPresheafedSpace

                                  An isomorphism of schemes induces a homeomorphism of the underlying topological spaces.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem AlgebraicGeometry.Scheme.homeoOfIso_symm {X Y : Scheme} (e : X Y) :
                                    (homeoOfIso e).symm = homeoOfIso e.symm
                                    @[simp]
                                    theorem AlgebraicGeometry.Scheme.homeoOfIso_apply {X Y : Scheme} (e : X Y) (x : X.toPresheafedSpace) :
                                    (homeoOfIso e) x = e.hom.base x
                                    def CategoryTheory.Iso.schemeIsoToHomeo {X Y : AlgebraicGeometry.Scheme} (e : X Y) :
                                    X.toPresheafedSpace ≃ₜ Y.toPresheafedSpace

                                    Alias of AlgebraicGeometry.Scheme.homeoOfIso.


                                    An isomorphism of schemes induces a homeomorphism of the underlying topological spaces.

                                    Equations
                                    Instances For
                                      noncomputable def AlgebraicGeometry.Scheme.Hom.homeomorph {X Y : Scheme} (f : X.Hom Y) [CategoryTheory.IsIso f] :
                                      X.toPresheafedSpace ≃ₜ Y.toPresheafedSpace

                                      An isomorphism of schemes induces a homeomorphism of the underlying topological spaces.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem AlgebraicGeometry.Scheme.Hom.homeomorph_apply {X Y : Scheme} (f : X.Hom Y) [CategoryTheory.IsIso f] (x : X.toPresheafedSpace) :
                                        f.homeomorph x = f.base x

                                        forgetful functor to TopCat is the same as coercion

                                        Equations
                                        Instances For
                                          theorem AlgebraicGeometry.Scheme.comp_base_apply {X Y Z : Scheme} (f : X Y) (g : Y Z) (x : X.toPresheafedSpace) :
                                          (CategoryTheory.CategoryStruct.comp f g).base x = g.base (f.base x)
                                          @[deprecated AlgebraicGeometry.Scheme.comp_app (since := "2024-06-23")]

                                          Alias of AlgebraicGeometry.Scheme.comp_app.

                                          @[deprecated AlgebraicGeometry.Scheme.comp_app_assoc (since := "2024-06-23")]

                                          Alias of AlgebraicGeometry.Scheme.comp_app_assoc.

                                          theorem AlgebraicGeometry.Scheme.appLE_comp_appLE {X Y Z : Scheme} (f : X Y) (g : Y Z) (U : Z.Opens) (V : Y.Opens) (W : X.Opens) (e₁ : V (TopologicalSpace.Opens.map g.base).obj U) (e₂ : W (TopologicalSpace.Opens.map f.base).obj V) :
                                          @[simp]
                                          theorem AlgebraicGeometry.Scheme.congr_app {X Y : Scheme} {f g : X Y} (e : f = g) (U : Y.Opens) :
                                          theorem AlgebraicGeometry.Scheme.app_eq {X Y : Scheme} (f : X Y) {U V : Y.Opens} (e : U = V) :
                                          theorem AlgebraicGeometry.Scheme.presheaf_map_eqToHom_op (X : Scheme) (U V : X.Opens) (i : U = V) :
                                          @[deprecated AlgebraicGeometry.Scheme.inv_appTop (since := "2024-11-23")]

                                          Alias of AlgebraicGeometry.Scheme.inv_appTop.

                                          The spectrum of a commutative ring, as a scheme.

                                          Equations
                                          Instances For

                                            The induced map of a ring homomorphism on the ring spectra, as a morphism of schemes.

                                            Equations
                                            Instances For

                                              The spectrum, as a contravariant functor from commutative rings to schemes.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                @[simp]
                                                theorem AlgebraicGeometry.Scheme.Spec_map {X✝ Y✝ : CommRingCatᵒᵖ} (f : X✝ Y✝) :
                                                Scheme.Spec.map f = Spec.map f.unop
                                                theorem AlgebraicGeometry.Spec_carrier (R : CommRingCat) :
                                                (Spec R).toPresheafedSpace = PrimeSpectrum R
                                                theorem AlgebraicGeometry.Spec.map_base_apply {R S : CommRingCat} (f : R S) (x : (Spec S).toPresheafedSpace) :
                                                (map f).base x = (PrimeSpectrum.comap f.hom) x
                                                theorem AlgebraicGeometry.Spec.map_app {R S : CommRingCat} (f : R S) (U : (Spec R).Opens) :
                                                theorem AlgebraicGeometry.Spec.map_appLE {R S : CommRingCat} (f : R S) {U : (Spec S).Opens} {V : (Spec R).Opens} (e : U (TopologicalSpace.Opens.map (map f).base).obj V) :

                                                The empty scheme.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  @[simp]
                                                  theorem AlgebraicGeometry.Scheme.Γ_map {X Y : Schemeᵒᵖ} (f : X Y) :
                                                  Γ.map f = Hom.appTop f.unop
                                                  theorem AlgebraicGeometry.Scheme.Γ_map_op {X Y : Scheme} (f : X Y) :
                                                  Γ.map f.op = Hom.appTop f

                                                  The counit (SpecΓIdentity.inv.op) of the adjunction ΓSpec as an isomorphism. This is almost never needed in practical use cases. Use ΓSpecIso instead.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    The global sections of Spec R is isomorphic to R.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      def AlgebraicGeometry.Scheme.basicOpen (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) :
                                                      X.Opens

                                                      The subset of the underlying space where the given section does not vanish.

                                                      Equations
                                                      • X.basicOpen f = X.toRingedSpace.basicOpen f
                                                      Instances For
                                                        theorem AlgebraicGeometry.Scheme.mem_basicOpen (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) (x : X.toPresheafedSpace) (hx : x U) :
                                                        x X.basicOpen f IsUnit ((X.presheaf.germ U x hx).hom f)
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.mem_basicOpen' (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) (x : U) :
                                                        x X.basicOpen f IsUnit ((X.presheaf.germ U x ).hom f)

                                                        A variant of mem_basicOpen for bundled x : U.

                                                        theorem AlgebraicGeometry.Scheme.mem_basicOpen'' (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) (x : X.toPresheafedSpace) :
                                                        x X.basicOpen f ∃ (m : x U), IsUnit ((X.presheaf.germ U x m).hom f)

                                                        A variant of mem_basicOpen without the x ∈ U assumption.

                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.mem_basicOpen_top (X : Scheme) (f : (X.presheaf.obj (Opposite.op ))) (x : X.toPresheafedSpace) :
                                                        x X.basicOpen f IsUnit ((X.presheaf.germ x trivial).hom f)
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_res (X : Scheme) {V U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) (i : Opposite.op U Opposite.op V) :
                                                        X.basicOpen ((X.presheaf.map i).hom f) = V X.basicOpen f
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_res_eq (X : Scheme) {V U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) (i : Opposite.op U Opposite.op V) [CategoryTheory.IsIso i] :
                                                        X.basicOpen ((X.presheaf.map i).hom f) = X.basicOpen f
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_le (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) :
                                                        X.basicOpen f U
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_restrict (X : Scheme) {V U : X.Opens} (i : V U) (f : (X.presheaf.obj (Opposite.op U))) :
                                                        X.basicOpen (TopCat.Presheaf.restrict f i) X.basicOpen f
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.preimage_basicOpen {X Y : Scheme} (f : X Y) {U : Y.Opens} (r : (Y.presheaf.obj (Opposite.op U))) :
                                                        (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((Hom.app f U).hom r)
                                                        theorem AlgebraicGeometry.Scheme.preimage_basicOpen_top {X Y : Scheme} (f : X Y) (r : (Y.presheaf.obj (Opposite.op ))) :
                                                        (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((Hom.appTop f).hom r)
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_appLE {X Y : Scheme} (f : X Y) (U : X.Opens) (V : Y.Opens) (e : U (TopologicalSpace.Opens.map f.base).obj V) (s : (Y.presheaf.obj (Opposite.op V))) :
                                                        X.basicOpen ((Hom.appLE f V U e).hom s) = U (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen s)
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_zero (X : Scheme) (U : X.Opens) :
                                                        X.basicOpen 0 =
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_mul (X : Scheme) {U : X.Opens} (f g : (X.presheaf.obj (Opposite.op U))) :
                                                        X.basicOpen (f * g) = X.basicOpen f X.basicOpen g
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_pow (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) {n : } (h : 0 < n) :
                                                        X.basicOpen (f ^ n) = X.basicOpen f
                                                        theorem AlgebraicGeometry.Scheme.basicOpen_of_isUnit (X : Scheme) {U : X.Opens} {f : (X.presheaf.obj (Opposite.op U))} (hf : IsUnit f) :
                                                        X.basicOpen f = U
                                                        instance AlgebraicGeometry.Scheme.algebra_section_section_basicOpen {X : Scheme} {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) :
                                                        Algebra (X.presheaf.obj (Opposite.op U)) (X.presheaf.obj (Opposite.op (X.basicOpen f)))
                                                        Equations
                                                        def AlgebraicGeometry.Scheme.zeroLocus (X : Scheme) {U : X.Opens} (s : Set (X.presheaf.obj (Opposite.op U))) :
                                                        Set X.toPresheafedSpace

                                                        The zero locus of a set of sections s over an open set U is the closed set consisting of the complement of U and of all points of U, where all elements of f vanish.

                                                        Equations
                                                        • X.zeroLocus s = X.toRingedSpace.zeroLocus s
                                                        Instances For
                                                          theorem AlgebraicGeometry.Scheme.zeroLocus_def (X : Scheme) {U : X.Opens} (s : Set (X.presheaf.obj (Opposite.op U))) :
                                                          X.zeroLocus s = fs, (X.basicOpen f).carrier
                                                          theorem AlgebraicGeometry.Scheme.zeroLocus_isClosed (X : Scheme) {U : X.Opens} (s : Set (X.presheaf.obj (Opposite.op U))) :
                                                          IsClosed (X.zeroLocus s)
                                                          theorem AlgebraicGeometry.Scheme.zeroLocus_singleton (X : Scheme) {U : X.Opens} (f : (X.presheaf.obj (Opposite.op U))) :
                                                          X.zeroLocus {f} = (X.basicOpen f).carrier
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.zeroLocus_empty_eq_univ (X : Scheme) {U : X.Opens} :
                                                          X.zeroLocus = Set.univ
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.mem_zeroLocus_iff (X : Scheme) {U : X.Opens} (s : Set (X.presheaf.obj (Opposite.op U))) (x : X.toPresheafedSpace) :
                                                          x X.zeroLocus s fs, xX.basicOpen f
                                                          @[simp]
                                                          theorem AlgebraicGeometry.basicOpen_eq_of_affine' {R : CommRingCat} (f : ((Spec R).presheaf.obj (Opposite.op ))) :
                                                          (Spec R).basicOpen f = PrimeSpectrum.basicOpen ((Scheme.ΓSpecIso R).hom.hom f)
                                                          theorem AlgebraicGeometry.Scheme.Spec_map_presheaf_map_eqToHom {X : Scheme} {U V : X.Opens} (h : U = V) (W : (Spec (X.presheaf.obj (Opposite.op V))).Opens) :
                                                          theorem AlgebraicGeometry.germ_eq_zero_of_pow_mul_eq_zero {X : Scheme} {U : TopologicalSpace.Opens X.toPresheafedSpace} (x : U) {f s : (X.presheaf.obj (Opposite.op U))} (hx : x X.basicOpen s) {n : } (hf : s ^ n * f = 0) :
                                                          (X.presheaf.germ U x ).hom f = 0
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.iso_hom_base_inv_base_assoc {X Y : Scheme} (e : X Y) {Z : TopCat} (h : X.toPresheafedSpace Z) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.iso_hom_base_inv_base_apply {X Y : Scheme} (e : X Y) (x : X.toPresheafedSpace) :
                                                          e.inv.base (e.hom.base x) = x
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.iso_inv_base_hom_base_assoc {X Y : Scheme} (e : X Y) {Z : TopCat} (h : Y.toPresheafedSpace Z) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.iso_inv_base_hom_base_apply {X Y : Scheme} (e : X Y) (y : Y.toPresheafedSpace) :
                                                          e.hom.base (e.inv.base y) = y
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_comp {X Y Z : Scheme} (f : X Y) (g : Y Z) (x : X.toPresheafedSpace) :
                                                          theorem AlgebraicGeometry.Scheme.stalkSpecializes_stalkMap {X Y : Scheme} (f : X Y) (x x' : X.toPresheafedSpace) (h : x x') :
                                                          CategoryTheory.CategoryStruct.comp (Y.presheaf.stalkSpecializes ) (Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (Hom.stalkMap f x') (X.presheaf.stalkSpecializes h)
                                                          theorem AlgebraicGeometry.Scheme.stalkSpecializes_stalkMap_assoc {X Y : Scheme} (f : X Y) (x x' : X.toPresheafedSpace) (h : x x') {Z : CommRingCat} (h✝ : X.presheaf.stalk x Z) :
                                                          theorem AlgebraicGeometry.Scheme.stalkSpecializes_stalkMap_apply {X Y : Scheme} (f : X Y) (x x' : X.toPresheafedSpace) (h : x x') (y : (Y.presheaf.stalk (f.base x'))) :
                                                          (Hom.stalkMap f x).hom ((Y.presheaf.stalkSpecializes ).hom y) = (X.presheaf.stalkSpecializes h).hom ((Hom.stalkMap f x').hom y)
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_congr {X Y : Scheme} (f g : X Y) (hfg : f = g) (x x' : X.toPresheafedSpace) (hxx' : x = x') :
                                                          CategoryTheory.CategoryStruct.comp (Hom.stalkMap f x) (X.presheaf.stalkCongr ).hom = CategoryTheory.CategoryStruct.comp (Y.presheaf.stalkCongr ).hom (Hom.stalkMap g x')
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_congr_assoc {X Y : Scheme} (f g : X Y) (hfg : f = g) (x x' : X.toPresheafedSpace) (hxx' : x = x') {Z : CommRingCat} (h : X.presheaf.stalk x' Z) :
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_congr_hom {X Y : Scheme} (f g : X Y) (hfg : f = g) (x : X.toPresheafedSpace) :
                                                          Hom.stalkMap f x = CategoryTheory.CategoryStruct.comp (Y.presheaf.stalkCongr ).hom (Hom.stalkMap g x)
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_congr_hom_assoc {X Y : Scheme} (f g : X Y) (hfg : f = g) (x : X.toPresheafedSpace) {Z : CommRingCat} (h : X.presheaf.stalk x Z) :
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_congr_point {X Y : Scheme} (f : X Y) (x x' : X.toPresheafedSpace) (hxx' : x = x') :
                                                          CategoryTheory.CategoryStruct.comp (Hom.stalkMap f x) (X.presheaf.stalkCongr ).hom = CategoryTheory.CategoryStruct.comp (Y.presheaf.stalkCongr ).hom (Hom.stalkMap f x')
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_congr_point_assoc {X Y : Scheme} (f : X Y) (x x' : X.toPresheafedSpace) (hxx' : x = x') {Z : CommRingCat} (h : X.presheaf.stalk x' Z) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_hom_inv {X Y : Scheme} (e : X Y) (y : Y.toPresheafedSpace) :
                                                          CategoryTheory.CategoryStruct.comp (Hom.stalkMap e.hom (e.inv.base y)) (Hom.stalkMap e.inv y) = (Y.presheaf.stalkCongr ).hom
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_hom_inv_assoc {X Y : Scheme} (e : X Y) (y : Y.toPresheafedSpace) {Z : CommRingCat} (h : Y.presheaf.stalk y Z) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_hom_inv_apply {X Y : Scheme} (e : X Y) (y : Y.toPresheafedSpace) (z : (Y.presheaf.stalk (e.hom.base (e.inv.base y)))) :
                                                          (Hom.stalkMap e.inv y).hom ((Hom.stalkMap e.hom (e.inv.base y)).hom z) = (Y.presheaf.stalkCongr ).hom.hom z
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_inv_hom {X Y : Scheme} (e : X Y) (x : X.toPresheafedSpace) :
                                                          CategoryTheory.CategoryStruct.comp (Hom.stalkMap e.inv (e.hom.base x)) (Hom.stalkMap e.hom x) = (X.presheaf.stalkCongr ).hom
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_inv_hom_assoc {X Y : Scheme} (e : X Y) (x : X.toPresheafedSpace) {Z : CommRingCat} (h : X.presheaf.stalk x Z) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_inv_hom_apply {X Y : Scheme} (e : X Y) (x : X.toPresheafedSpace) (y : (X.presheaf.stalk (e.inv.base (e.hom.base x)))) :
                                                          (Hom.stalkMap e.hom x).hom ((Hom.stalkMap e.inv (e.hom.base x)).hom y) = (X.presheaf.stalkCongr ).hom.hom y
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_germ {X Y : Scheme} (f : X Y) (U : Y.Opens) (x : X.toPresheafedSpace) (hx : f.base x U) :
                                                          CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U (f.base x) hx) (Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (Hom.app f U) (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx)
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_germ_assoc {X Y : Scheme} (f : X Y) (U : Y.Opens) (x : X.toPresheafedSpace) (hx : f.base x U) {Z : CommRingCat} (h : X.presheaf.stalk x Z) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.stalkMap_germ_apply {X Y : Scheme} (f : X Y) (U : Y.Opens) (x : X.toPresheafedSpace) (hx : f.base x U) (y : (Y.presheaf.obj (Opposite.op U))) :
                                                          (Hom.stalkMap f x).hom ((Y.presheaf.germ U (f.base x) hx).hom y) = (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx).hom ((Hom.app f U).hom y)
                                                          noncomputable def AlgebraicGeometry.Scheme.arrowStalkMapIsoOfEq {X Y : Scheme} (f : X Y) {x y : X.toPresheafedSpace} (h : x = y) :

                                                          If x = y, the stalk maps are isomorphic.

                                                          Equations
                                                          Instances For