Documentation

Mathlib.Geometry.RingedSpace.SheafedSpace

Sheafed spaces #

Introduces the category of topological spaces equipped with a sheaf (taking values in an arbitrary target category C.)

We further describe how to apply functors and natural transformations to the values of the presheaves.

A SheafedSpace C is a topological space equipped with a sheaf of Cs.

Instances For

    Extract the sheaf C (X : Top) from a SheafedSpace C.

    Equations
    • X.sheaf = { val := X.presheaf, cond := }
    Instances For
      theorem AlgebraicGeometry.SheafedSpace.mk_coe {C : Type u} [CategoryTheory.Category.{v, u} C] (carrier : TopCat) (presheaf : TopCat.Presheaf C carrier) (h : { carrier := carrier, presheaf := presheaf }.presheaf.IsSheaf) :
      { carrier := carrier, presheaf := presheaf, IsSheaf := h }.toPresheafedSpace = carrier
      Equations
      • X.instTopologicalSpaceαCarrier = (↑X.toPresheafedSpace).str

      The trivial unit valued sheaf on any topological space.

      Equations
      Instances For
        theorem AlgebraicGeometry.SheafedSpace.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : SheafedSpace C} (α β : X Y) (w : α.base = β.base) (h : CategoryTheory.CategoryStruct.comp α.c (CategoryTheory.whiskerRight (CategoryTheory.eqToHom ) X.presheaf) = β.c) :
        α = β
        def AlgebraicGeometry.SheafedSpace.isoMk {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : SheafedSpace C} (e : X.toPresheafedSpace Y.toPresheafedSpace) :
        X Y

        Constructor for isomorphisms in the category SheafedSpace C.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.SheafedSpace.isoMk_inv {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : SheafedSpace C} (e : X.toPresheafedSpace Y.toPresheafedSpace) :
          (isoMk e).inv = e.inv
          @[simp]
          theorem AlgebraicGeometry.SheafedSpace.isoMk_hom {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : SheafedSpace C} (e : X.toPresheafedSpace Y.toPresheafedSpace) :
          (isoMk e).hom = e.hom
          @[simp]
          theorem AlgebraicGeometry.SheafedSpace.comp_c_app {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z : SheafedSpace C} (α : X Y) (β : Y Z) (U : (TopologicalSpace.Opens Z.toPresheafedSpace)ᵒᵖ) :
          theorem AlgebraicGeometry.SheafedSpace.congr_app {C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : SheafedSpace C} {α β : X Y} (h : α = β) (U : (TopologicalSpace.Opens Y.toPresheafedSpace)ᵒᵖ) :
          α.c.app U = CategoryTheory.CategoryStruct.comp (β.c.app U) (X.presheaf.map (CategoryTheory.eqToHom ))

          The forgetful functor from SheafedSpace to Top.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The restriction of a sheafed space along an open embedding into the space.

            Equations
            • X.restrict h = { toPresheafedSpace := X.restrict h, IsSheaf := }
            Instances For
              def AlgebraicGeometry.SheafedSpace.ofRestrict {C : Type u} [CategoryTheory.Category.{v, u} C] {U : TopCat} (X : SheafedSpace C) {f : U X.toPresheafedSpace} (h : Topology.IsOpenEmbedding f) :
              X.restrict h X

              The map from the restriction of a presheafed space.

              Equations
              • X.ofRestrict h = X.ofRestrict h
              Instances For
                @[simp]
                theorem AlgebraicGeometry.SheafedSpace.ofRestrict_base {C : Type u} [CategoryTheory.Category.{v, u} C] {U : TopCat} (X : SheafedSpace C) {f : U X.toPresheafedSpace} (h : Topology.IsOpenEmbedding f) :
                (X.ofRestrict h).base = f
                @[simp]
                theorem AlgebraicGeometry.SheafedSpace.ofRestrict_c_app {C : Type u} [CategoryTheory.Category.{v, u} C] {U : TopCat} (X : SheafedSpace C) {f : U X.toPresheafedSpace} (h : Topology.IsOpenEmbedding f) (V : (TopologicalSpace.Opens X.toPresheafedSpace)ᵒᵖ) :
                (X.ofRestrict h).c.app V = X.presheaf.map (.adjunction.counit.app (Opposite.unop V)).op

                The restriction of a sheafed space X to the top subspace is isomorphic to X itself.

                Equations
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.SheafedSpace.restrictTopIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (X : SheafedSpace C) :
                  X.restrictTopIso.hom = X.ofRestrict
                  @[simp]
                  theorem AlgebraicGeometry.SheafedSpace.restrictTopIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] (X : SheafedSpace C) :
                  X.restrictTopIso.inv = X.toRestrictTop
                  @[simp]