Documentation

Mathlib.Geometry.RingedSpace.SheafedSpace

Sheafed spaces #

Introduces the category of topological spaces equipped with a sheaf (taking values in an arbitrary target category C.)

We further describe how to apply functors and natural transformations to the values of the presheaves.

A SheafedSpace C is a topological space equipped with a sheaf of Cs.

Instances For
    Equations
    Equations

    Extract the sheaf C (X : Top) from a SheafedSpace C.

    Equations
    Instances For
      theorem AlgebraicGeometry.SheafedSpace.mk_coe {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (carrier : TopCat) (presheaf : TopCat.Presheaf C carrier) (h : TopCat.Presheaf.IsSheaf { carrier := carrier, presheaf := presheaf }.presheaf) :
      { toPresheafedSpace := { carrier := carrier, presheaf := presheaf }, IsSheaf := h }.toPresheafedSpace = carrier

      The trivial unit valued sheaf on any topological space.

      Equations
      Instances For
        Equations
        • AlgebraicGeometry.SheafedSpace.instCategorySheafedSpace = let_fun this := inferInstance; this

        Constructor for isomorphisms in the category SheafedSpace C.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace_obj {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (self : AlgebraicGeometry.SheafedSpace C) :
          AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace.obj self = self.toPresheafedSpace
          @[simp]
          theorem AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace_map {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] :
          ∀ {X Y : CategoryTheory.InducedCategory (AlgebraicGeometry.PresheafedSpace C) AlgebraicGeometry.SheafedSpace.toPresheafedSpace} (f : X Y), AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace.map f = f

          Forgetting the sheaf condition is a functor from SheafedSpace C to PresheafedSpace C.

          Equations
          Instances For
            Equations
            • =
            Equations
            • =
            theorem AlgebraicGeometry.SheafedSpace.congr_app {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : AlgebraicGeometry.SheafedSpace C} {Y : AlgebraicGeometry.SheafedSpace C} {α : X Y} {β : X Y} (h : α = β) (U : (TopologicalSpace.Opens Y.toPresheafedSpace)ᵒᵖ) :
            α.c.app U = CategoryTheory.CategoryStruct.comp (β.c.app U) (X.presheaf.map (CategoryTheory.eqToHom ))

            The forgetful functor from SheafedSpace to Top.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The restriction of a sheafed space along an open embedding into the space.

              Equations
              Instances For

                The global sections, notated Gamma.

                Equations
                • AlgebraicGeometry.SheafedSpace.Γ = CategoryTheory.Functor.comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace.op AlgebraicGeometry.PresheafedSpace.Γ
                Instances For
                  theorem AlgebraicGeometry.SheafedSpace.Γ_def {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] :
                  AlgebraicGeometry.SheafedSpace.Γ = CategoryTheory.Functor.comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace.op AlgebraicGeometry.PresheafedSpace.Γ
                  @[simp]
                  theorem AlgebraicGeometry.SheafedSpace.Γ_obj {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (X : (AlgebraicGeometry.SheafedSpace C)ᵒᵖ) :
                  AlgebraicGeometry.SheafedSpace.Γ.obj X = X.unop.presheaf.obj (Opposite.op )
                  theorem AlgebraicGeometry.SheafedSpace.Γ_obj_op {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (X : AlgebraicGeometry.SheafedSpace C) :
                  AlgebraicGeometry.SheafedSpace.Γ.obj (Opposite.op X) = X.presheaf.obj (Opposite.op )
                  @[simp]
                  theorem AlgebraicGeometry.SheafedSpace.Γ_map {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {X : (AlgebraicGeometry.SheafedSpace C)ᵒᵖ} {Y : (AlgebraicGeometry.SheafedSpace C)ᵒᵖ} (f : X Y) :
                  AlgebraicGeometry.SheafedSpace.Γ.map f = f.unop.c.app (Opposite.op )
                  theorem AlgebraicGeometry.SheafedSpace.Γ_map_op {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : AlgebraicGeometry.SheafedSpace C} {Y : AlgebraicGeometry.SheafedSpace C} (f : X Y) :
                  AlgebraicGeometry.SheafedSpace.Γ.map f.op = f.c.app (Opposite.op )
                  Equations
                  • One or more equations did not get rendered due to their size.