Documentation

Mathlib.CategoryTheory.MorphismProperty.Limits

Relation of morphism properties with limits #

The following predicates are introduces for morphism properties P:

We define P.universally for the class of morphisms which satisfy P after any base change.

We also introduce properties IsStableUnderProductsOfShape, IsStableUnderLimitsOfShape, IsStableUnderFiniteProducts, and similar properties for colimits and coproducts.

A morphism property is IsStableUnderBaseChange if the base change of such a morphism still falls in the class.

  • of_isPullback {X Y Y' S : C} {f : X S} {g : Y S} {f' : Y' Y} {g' : Y' X} (sq : IsPullback f' g' g f) (hg : P g) : P g'
Instances

    A morphism property is IsStableUnderCobaseChange if the cobase change of such a morphism still falls in the class.

    • of_isPushout {A A' B B' : C} {f : A A'} {g : A B} {f' : B B'} {g' : A' B'} (sq : IsPushout g f f' g') (hf : P f) : P f'
    Instances
      theorem CategoryTheory.MorphismProperty.of_isPullback {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {X Y Y' S : C} {f : X S} {g : Y S} {f' : Y' Y} {g' : Y' X} (sq : IsPullback f' g' g f) (hg : P g) :
      P g'
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.mk' {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.RespectsIso] (hP₂ : ∀ (X Y S : C) (f : X S) (g : Y S) [inst : Limits.HasPullback f g], P gP (Limits.pullback.fst f g)) :
      P.IsStableUnderBaseChange

      Alternative constructor for IsStableUnderBaseChange.

      @[instance 900]
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.respectsIso {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] :
      P.RespectsIso
      theorem CategoryTheory.MorphismProperty.pullback_fst {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {X Y S : C} (f : X S) (g : Y S) [Limits.HasPullback f g] (H : P g) :
      @[deprecated CategoryTheory.MorphismProperty.pullback_fst (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.fst {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {X Y S : C} (f : X S) (g : Y S) [Limits.HasPullback f g] (H : P g) :

      Alias of CategoryTheory.MorphismProperty.pullback_fst.

      theorem CategoryTheory.MorphismProperty.pullback_snd {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {X Y S : C} (f : X S) (g : Y S) [Limits.HasPullback f g] (H : P f) :
      @[deprecated CategoryTheory.MorphismProperty.pullback_snd (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.snd {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {X Y S : C} (f : X S) (g : Y S) [Limits.HasPullback f g] (H : P f) :

      Alias of CategoryTheory.MorphismProperty.pullback_snd.

      theorem CategoryTheory.MorphismProperty.baseChange_obj {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {S S' : C} (f : S' S) (X : Over S) (H : P X.hom) :
      P ((Over.pullback f).obj X).hom
      @[deprecated CategoryTheory.MorphismProperty.baseChange_obj (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.baseChange_obj {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {S S' : C} (f : S' S) (X : Over S) (H : P X.hom) :
      P ((Over.pullback f).obj X).hom

      Alias of CategoryTheory.MorphismProperty.baseChange_obj.

      theorem CategoryTheory.MorphismProperty.baseChange_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {S S' : C} (f : S' S) {X Y : Over S} (g : X Y) (H : P g.left) :
      P ((Over.pullback f).map g).left
      @[deprecated CategoryTheory.MorphismProperty.baseChange_map (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.baseChange_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] {S S' : C} (f : S' S) {X Y : Over S} (g : X Y) (H : P g.left) :
      P ((Over.pullback f).map g).left

      Alias of CategoryTheory.MorphismProperty.baseChange_map.

      theorem CategoryTheory.MorphismProperty.pullback_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] [P.IsStableUnderComposition] {S X X' Y Y' : C} {f : X S} {g : Y S} {f' : X' S} {g' : Y' S} {i₁ : X X'} {i₂ : Y Y'} (h₁ : P i₁) (h₂ : P i₂) (e₁ : f = CategoryStruct.comp i₁ f') (e₂ : g = CategoryStruct.comp i₂ g') :
      P (Limits.pullback.map f g f' g' i₁ i₂ (CategoryStruct.id S) )
      @[deprecated CategoryTheory.MorphismProperty.pullback_map (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.pullback_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] [P.IsStableUnderComposition] {S X X' Y Y' : C} {f : X S} {g : Y S} {f' : X' S} {g' : Y' S} {i₁ : X X'} {i₂ : Y Y'} (h₁ : P i₁) (h₂ : P i₂) (e₁ : f = CategoryStruct.comp i₁ f') (e₂ : g = CategoryStruct.comp i₂ g') :
      P (Limits.pullback.map f g f' g' i₁ i₂ (CategoryStruct.id S) )

      Alias of CategoryTheory.MorphismProperty.pullback_map.

      theorem CategoryTheory.MorphismProperty.of_isPushout {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] {A A' B B' : C} {f : A A'} {g : A B} {f' : B B'} {g' : A' B'} (sq : IsPushout g f f' g') (hf : P f) :
      P f'
      theorem CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.mk' {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.RespectsIso] (hP₂ : ∀ (A B A' : C) (f : A A') (g : A B) [inst : Limits.HasPushout f g], P fP (Limits.pushout.inr f g)) :
      P.IsStableUnderCobaseChange

      An alternative constructor for IsStableUnderCobaseChange.

      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.respectsIso {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] :
      P.RespectsIso
      theorem CategoryTheory.MorphismProperty.pushout_inl {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A A') (g : A B) [Limits.HasPushout f g] (H : P g) :
      @[deprecated CategoryTheory.MorphismProperty.pushout_inl (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inl {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A A') (g : A B) [Limits.HasPushout f g] (H : P g) :

      Alias of CategoryTheory.MorphismProperty.pushout_inl.

      theorem CategoryTheory.MorphismProperty.pushout_inr {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A A') (g : A B) [Limits.HasPushout f g] (H : P f) :
      @[deprecated CategoryTheory.MorphismProperty.pushout_inr (since := "2024-11-06")]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inr {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A A') (g : A B) [Limits.HasPushout f g] (H : P f) :

      Alias of CategoryTheory.MorphismProperty.pushout_inr.

      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.op {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderCobaseChange] :
      P.op.IsStableUnderBaseChange
      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.unop {C : Type u} [Category.{v, u} C] {P : MorphismProperty Cᵒᵖ} [P.IsStableUnderCobaseChange] :
      P.unop.IsStableUnderBaseChange
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.op {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] :
      P.op.IsStableUnderCobaseChange
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.unop {C : Type u} [Category.{v, u} C] {P : MorphismProperty Cᵒᵖ} [P.IsStableUnderBaseChange] :
      P.unop.IsStableUnderCobaseChange
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf {C : Type u} [Category.{v, u} C] {P Q : MorphismProperty C} [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] :
      (P Q).IsStableUnderBaseChange
      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.inf {C : Type u} [Category.{v, u} C] {P Q : MorphismProperty C} [P.IsStableUnderCobaseChange] [Q.IsStableUnderCobaseChange] :
      (P Q).IsStableUnderCobaseChange

      The property that a morphism property W is stable under limits indexed by a category J.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The property that a morphism property W is stable under colimits indexed by a category J.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.MorphismProperty.IsStableUnderLimitsOfShape.lim_map {C : Type u} [Category.{v, u} C] {W : MorphismProperty C} {J : Type u_1} [Category.{u_2, u_1} J] (hW : W.IsStableUnderLimitsOfShape J) {X Y : Functor J C} (f : X Y) [Limits.HasLimitsOfShape J C] (hf : W.functorCategory J f) :
          W (Limits.lim.map f)
          theorem CategoryTheory.MorphismProperty.IsStableUnderColimitsOfShape.colim_map {C : Type u} [Category.{v, u} C] {W : MorphismProperty C} {J : Type u_1} [Category.{u_2, u_1} J] (hW : W.IsStableUnderColimitsOfShape J) {X Y : Functor J C} (f : X Y) [Limits.HasColimitsOfShape J C] (hf : W.functorCategory J f) :
          W (Limits.colim.map f)
          @[reducible, inline]

          The property that a morphism property W is stable under products indexed by a type J.

          Equations
          Instances For
            @[reducible, inline]

            The property that a morphism property W is stable under coproducts indexed by a type J.

            Equations
            Instances For
              theorem CategoryTheory.MorphismProperty.IsStableUnderProductsOfShape.mk {C : Type u} [Category.{v, u} C] (W : MorphismProperty C) (J : Type u_1) [W.RespectsIso] (hW : ∀ (X₁ X₂ : JC) [inst : Limits.HasProduct X₁] [inst_1 : Limits.HasProduct X₂] (f : (j : J) → X₁ j X₂ j), (∀ (j : J), W (f j))W (Limits.Pi.map f)) :
              W.IsStableUnderProductsOfShape J
              theorem CategoryTheory.MorphismProperty.IsStableUnderCoproductsOfShape.mk {C : Type u} [Category.{v, u} C] (W : MorphismProperty C) (J : Type u_1) [W.RespectsIso] (hW : ∀ (X₁ X₂ : JC) [inst : Limits.HasCoproduct X₁] [inst_1 : Limits.HasCoproduct X₂] (f : (j : J) → X₁ j X₂ j), (∀ (j : J), W (f j))W (Limits.Sigma.map f)) :
              W.IsStableUnderCoproductsOfShape J

              The condition that a property of morphisms is stable by finite products.

              • isStableUnderProductsOfShape (J : Type) [Finite J] : W.IsStableUnderProductsOfShape J
              Instances

                The condition that a property of morphisms is stable by finite coproducts.

                • isStableUnderCoproductsOfShape (J : Type) [Finite J] : W.IsStableUnderCoproductsOfShape J
                Instances
                  theorem CategoryTheory.MorphismProperty.isStableUnderProductsOfShape_of_isStableUnderFiniteProducts {C : Type u} [Category.{v, u} C] (W : MorphismProperty C) (J : Type) [Finite J] [W.IsStableUnderFiniteProducts] :
                  W.IsStableUnderProductsOfShape J
                  theorem CategoryTheory.MorphismProperty.isStableUnderCoproductsOfShape_of_isStableUnderFiniteCoproducts {C : Type u} [Category.{v, u} C] (W : MorphismProperty C) (J : Type) [Finite J] [W.IsStableUnderFiniteCoproducts] :
                  W.IsStableUnderCoproductsOfShape J

                  For P : MorphismProperty C, P.diagonal is a morphism property that holds for f : X ⟶ Y whenever P holds for X ⟶ Y xₓ Y.

                  Equations
                  Instances For
                    instance CategoryTheory.MorphismProperty.RespectsIso.diagonal {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.RespectsIso] :
                    P.diagonal.RespectsIso
                    instance CategoryTheory.MorphismProperty.diagonal_isStableUnderComposition {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderComposition] [P.RespectsIso] [P.IsStableUnderBaseChange] :
                    P.diagonal.IsStableUnderComposition
                    instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.diagonal {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] [P.RespectsIso] :
                    P.diagonal.IsStableUnderBaseChange
                    theorem CategoryTheory.MorphismProperty.hasOfPostcompProperty_iff_le_diagonal {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {P : MorphismProperty C} [P.IsStableUnderBaseChange] [P.IsMultiplicative] {Q : MorphismProperty C} [Q.IsStableUnderBaseChange] :
                    P.HasOfPostcompProperty Q Q P.diagonal

                    If P is multiplicative and stable under base change, having the of-postcomp property wrt. Q is equivalent to Q implying P on the diagonal.

                    P.universally holds for a morphism f : X ⟶ Y iff P holds for all X ×[Y] Y' ⟶ Y'.

                    Equations
                    Instances For
                      instance CategoryTheory.MorphismProperty.IsStableUnderComposition.universally {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] (P : MorphismProperty C) [hP : P.IsStableUnderComposition] :
                      P.universally.IsStableUnderComposition
                      theorem CategoryTheory.MorphismProperty.universally_inf {C : Type u} [Category.{v, u} C] (P Q : MorphismProperty C) :
                      (P Q).universally = P.universally Q.universally
                      theorem CategoryTheory.MorphismProperty.universally_eq_iff {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} :
                      P.universally = P P.IsStableUnderBaseChange
                      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.universally_eq {C : Type u} [Category.{v, u} C] {P : MorphismProperty C} [hP : P.IsStableUnderBaseChange] :
                      P.universally = P