Documentation

Mathlib.CategoryTheory.MorphismProperty.Limits

Relation of morphism properties with limits #

The following predicates are introduces for morphism properties P:

We define P.universally for the class of morphisms which satisfy P after any base change.

We also introduce properties IsStableUnderProductsOfShape, IsStableUnderLimitsOfShape, IsStableUnderFiniteProducts.

A morphism property is IsStableUnderBaseChange if the base change of such a morphism still falls in the class.

Instances

    A morphism property is IsStableUnderCobaseChange if the cobase change of such a morphism still falls in the class.

    Instances
      theorem CategoryTheory.MorphismProperty.of_isPullback {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] {X Y Y' S : C} {f : X S} {g : Y S} {f' : Y' Y} {g' : Y' X} (sq : CategoryTheory.IsPullback f' g' g f) (hg : P g) :
      P g'
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.mk' {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.RespectsIso] (hP₂ : ∀ (X Y S : C) (f : X S) (g : Y S) [inst : CategoryTheory.Limits.HasPullback f g], P gP (CategoryTheory.Limits.pullback.fst f g)) :
      P.IsStableUnderBaseChange

      Alternative constructor for IsStableUnderBaseChange.

      @[instance 900]
      Equations
      • =
      @[deprecated CategoryTheory.MorphismProperty.pullback_fst]

      Alias of CategoryTheory.MorphismProperty.pullback_fst.

      @[deprecated CategoryTheory.MorphismProperty.pullback_snd]

      Alias of CategoryTheory.MorphismProperty.pullback_snd.

      @[deprecated CategoryTheory.MorphismProperty.baseChange_obj]

      Alias of CategoryTheory.MorphismProperty.baseChange_obj.

      theorem CategoryTheory.MorphismProperty.baseChange_map {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] {S S' : C} (f : S' S) {X Y : CategoryTheory.Over S} (g : X Y) (H : P g.left) :
      P ((CategoryTheory.Over.pullback f).map g).left
      @[deprecated CategoryTheory.MorphismProperty.baseChange_map]

      Alias of CategoryTheory.MorphismProperty.baseChange_map.

      theorem CategoryTheory.MorphismProperty.pullback_map {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [P.IsStableUnderComposition] {S X X' Y Y' : C} {f : X S} {g : Y S} {f' : X' S} {g' : Y' S} {i₁ : X X'} {i₂ : Y Y'} (h₁ : P i₁) (h₂ : P i₂) (e₁ : f = CategoryTheory.CategoryStruct.comp i₁ f') (e₂ : g = CategoryTheory.CategoryStruct.comp i₂ g') :
      @[deprecated CategoryTheory.MorphismProperty.pullback_map]
      theorem CategoryTheory.MorphismProperty.IsStableUnderBaseChange.pullback_map {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [P.IsStableUnderComposition] {S X X' Y Y' : C} {f : X S} {g : Y S} {f' : X' S} {g' : Y' S} {i₁ : X X'} {i₂ : Y Y'} (h₁ : P i₁) (h₂ : P i₂) (e₁ : f = CategoryTheory.CategoryStruct.comp i₁ f') (e₂ : g = CategoryTheory.CategoryStruct.comp i₂ g') :

      Alias of CategoryTheory.MorphismProperty.pullback_map.

      theorem CategoryTheory.MorphismProperty.of_isPushout {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] {A A' B B' : C} {f : A A'} {g : A B} {f' : B B'} {g' : A' B'} (sq : CategoryTheory.IsPushout g f f' g') (hf : P f) :
      P f'
      theorem CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.mk' {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.RespectsIso] (hP₂ : ∀ (A B A' : C) (f : A A') (g : A B) [inst : CategoryTheory.Limits.HasPushout f g], P fP (CategoryTheory.Limits.pushout.inr f g)) :
      P.IsStableUnderCobaseChange

      An alternative constructor for IsStableUnderCobaseChange.

      Equations
      • =
      theorem CategoryTheory.MorphismProperty.pushout_inl {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A A') (g : A B) [CategoryTheory.Limits.HasPushout f g] (H : P g) :
      @[deprecated CategoryTheory.MorphismProperty.pushout_inl]

      Alias of CategoryTheory.MorphismProperty.pushout_inl.

      theorem CategoryTheory.MorphismProperty.pushout_inr {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] {A B A' : C} (f : A A') (g : A B) [CategoryTheory.Limits.HasPushout f g] (H : P f) :
      @[deprecated CategoryTheory.MorphismProperty.pushout_inr]

      Alias of CategoryTheory.MorphismProperty.pushout_inr.

      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.op {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] :
      P.op.IsStableUnderBaseChange
      Equations
      • =
      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.unop {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty Cᵒᵖ} [P.IsStableUnderCobaseChange] :
      P.unop.IsStableUnderBaseChange
      Equations
      • =
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.op {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] :
      P.op.IsStableUnderCobaseChange
      Equations
      • =
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.unop {C : Type u} [CategoryTheory.Category.{v, u} C] {P : CategoryTheory.MorphismProperty Cᵒᵖ} [P.IsStableUnderBaseChange] :
      P.unop.IsStableUnderCobaseChange
      Equations
      • =
      instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf {C : Type u} [CategoryTheory.Category.{v, u} C] {P Q : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] :
      (P Q).IsStableUnderBaseChange
      Equations
      • =
      instance CategoryTheory.MorphismProperty.IsStableUnderCobaseChange.inf {C : Type u} [CategoryTheory.Category.{v, u} C] {P Q : CategoryTheory.MorphismProperty C} [P.IsStableUnderCobaseChange] [Q.IsStableUnderCobaseChange] :
      (P Q).IsStableUnderCobaseChange
      Equations
      • =

      The property that a morphism property W is stable under limits indexed by a category J.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.MorphismProperty.IsStableUnderLimitsOfShape.lim_map {C : Type u} [CategoryTheory.Category.{v, u} C] {W : CategoryTheory.MorphismProperty C} {J : Type u_1} [CategoryTheory.Category.{u_2, u_1} J] (hW : W.IsStableUnderLimitsOfShape J) {X Y : CategoryTheory.Functor J C} (f : X Y) [CategoryTheory.Limits.HasLimitsOfShape J C] (hf : W.functorCategory J f) :
        W (CategoryTheory.Limits.lim.map f)
        @[reducible, inline]

        The property that a morphism property W is stable under products indexed by a type J.

        Equations
        Instances For
          theorem CategoryTheory.MorphismProperty.IsStableUnderProductsOfShape.mk {C : Type u} [CategoryTheory.Category.{v, u} C] (W : CategoryTheory.MorphismProperty C) (J : Type u_1) [W.RespectsIso] [CategoryTheory.Limits.HasProductsOfShape J C] (hW : ∀ (X₁ X₂ : JC) (f : (j : J) → X₁ j X₂ j), (∀ (j : J), W (f j))W (CategoryTheory.Limits.Pi.map f)) :
          W.IsStableUnderProductsOfShape J

          The condition that a property of morphisms is stable by finite products.

          • isStableUnderProductsOfShape : ∀ (J : Type) [inst : Finite J], W.IsStableUnderProductsOfShape J
          Instances

            For P : MorphismProperty C, P.diagonal is a morphism property that holds for f : X ⟶ Y whenever P holds for X ⟶ Y xₓ Y.

            Equations
            Instances For
              instance CategoryTheory.MorphismProperty.diagonal_isStableUnderComposition {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderComposition] [P.RespectsIso] [P.IsStableUnderBaseChange] :
              P.diagonal.IsStableUnderComposition
              Equations
              • =
              instance CategoryTheory.MorphismProperty.IsStableUnderBaseChange.diagonal {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [P.RespectsIso] :
              P.diagonal.IsStableUnderBaseChange
              Equations
              • =
              theorem CategoryTheory.MorphismProperty.hasOfPostcompProperty_iff_le_diagonal {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasPullbacks C] {P : CategoryTheory.MorphismProperty C} [P.IsStableUnderBaseChange] [P.IsMultiplicative] {Q : CategoryTheory.MorphismProperty C} [Q.IsStableUnderBaseChange] :
              P.HasOfPostcompProperty Q Q P.diagonal

              If P is multiplicative and stable under base change, having the of-postcomp property wrt. Q is equivalent to Q implying P on the diagonal.

              P.universally holds for a morphism f : X ⟶ Y iff P holds for all X ×[Y] Y' ⟶ Y'.

              Equations
              Instances For
                Equations
                • =
                theorem CategoryTheory.MorphismProperty.universally_mono {C : Type u} [CategoryTheory.Category.{v, u} C] :
                Monotone CategoryTheory.MorphismProperty.universally