Documentation

Mathlib.AlgebraicGeometry.Restrict

Restriction of Schemes and Morphisms #

Main definition #

Open subset of a scheme as a scheme.

Equations
  • U = X.restrict
Instances For
    Equations
    • AlgebraicGeometry.Scheme.Opens.instCoeOut = { coe := AlgebraicGeometry.Scheme.Opens.toScheme }

    The restriction of a scheme to an open subset.

    Equations
    • U = X.ofRestrict
    Instances For
      @[simp]
      theorem AlgebraicGeometry.Scheme.Opens.ι_base_apply {X : AlgebraicGeometry.Scheme} (U : X.Opens) (self : U) :
      U.base self = self
      Equations
      • U.instOverToScheme = { hom := U }
      Equations
      • U.instCanonicallyOver = CategoryTheory.CanonicallyOverClass.mk
      theorem AlgebraicGeometry.Scheme.Opens.toScheme_carrier {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
      (↑U).toPresheafedSpace = U
      theorem AlgebraicGeometry.Scheme.Opens.toScheme_presheaf_obj {X : AlgebraicGeometry.Scheme} (U : X.Opens) (V : (↑U).Opens) :
      (↑U).presheaf.obj (Opposite.op V) = X.presheaf.obj (Opposite.op ((AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj V))
      @[simp]
      theorem AlgebraicGeometry.Scheme.Opens.toScheme_presheaf_map {X : AlgebraicGeometry.Scheme} (U : X.Opens) {V W : (TopologicalSpace.Opens (↑U).toPresheafedSpace)ᵒᵖ} (i : V W) :
      (↑U).presheaf.map i = X.presheaf.map ((AlgebraicGeometry.Scheme.Hom.opensFunctor U).map i.unop).op
      @[simp]
      theorem AlgebraicGeometry.Scheme.Opens.ι_appLE {X : AlgebraicGeometry.Scheme} (U V : X.Opens) (W : (↑U).Opens) (e : W (TopologicalSpace.Opens.map U.base).obj V) :
      @[simp]
      theorem AlgebraicGeometry.Scheme.Opens.range_ι {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
      Set.range U.base = U
      @[simp]
      theorem AlgebraicGeometry.Scheme.Opens.nonempty_iff {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
      Nonempty (↑U).toPresheafedSpace (↑U).Nonempty
      def AlgebraicGeometry.Scheme.Opens.topIso {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
      (↑U).presheaf.obj (Opposite.op ) X.presheaf.obj (Opposite.op U)

      The global sections of the restriction is isomorphic to the sections on the open set.

      Equations
      Instances For
        @[simp]
        theorem AlgebraicGeometry.Scheme.Opens.topIso_hom {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
        U.topIso.hom = X.presheaf.map (CategoryTheory.eqToHom ).op
        @[simp]
        theorem AlgebraicGeometry.Scheme.Opens.topIso_inv {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
        U.topIso.inv = X.presheaf.map (CategoryTheory.eqToHom ).op
        def AlgebraicGeometry.Scheme.Opens.stalkIso {X : AlgebraicGeometry.Scheme} (U : X.Opens) (x : U) :
        (↑U).presheaf.stalk x X.presheaf.stalk x

        The stalks of an open subscheme are isomorphic to the stalks of the original scheme.

        Equations
        • U.stalkIso x = X.restrictStalkIso x
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom {X : AlgebraicGeometry.Scheme} (U : X.Opens) {V : (↑U).Opens} (x : U) (hx : x V) :
          CategoryTheory.CategoryStruct.comp ((↑U).presheaf.germ V x hx) (U.stalkIso x).hom = X.presheaf.germ ((AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj V) x
          @[simp]
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom_assoc {X : AlgebraicGeometry.Scheme} (U : X.Opens) {V : (↑U).Opens} (x : U) (hx : x V) {Z : CommRingCat} (h : X.presheaf.stalk x Z) :
          CategoryTheory.CategoryStruct.comp ((↑U).presheaf.germ V x hx) (CategoryTheory.CategoryStruct.comp (U.stalkIso x).hom h) = CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj V) x ) h
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv {X : AlgebraicGeometry.Scheme} (U : X.Opens) (V : (↑U).Opens) (x : U) (hx : x V) :
          CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj V) x ) (U.stalkIso x).inv = (↑U).presheaf.germ V x hx
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv_assoc {X : AlgebraicGeometry.Scheme} (U : X.Opens) (V : (↑U).Opens) (x : U) (hx : x V) {Z : CommRingCat} (h : (↑U).presheaf.stalk x Z) :
          CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj V) x ) (CategoryTheory.CategoryStruct.comp (U.stalkIso x).inv h) = CategoryTheory.CategoryStruct.comp ((↑U).presheaf.germ V x hx) h
          def AlgebraicGeometry.Scheme.openCoverOfISupEqTop {s : Type u_1} (X : AlgebraicGeometry.Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :
          X.OpenCover

          If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

          Equations
          • X.openCoverOfISupEqTop U hU = { J := s, obj := fun (i : s) => (U i), map := fun (i : s) => (U i), f := fun (x : X.toPresheafedSpace) => .choose, covers := , map_prop := }
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_J {s : Type u_1} (X : AlgebraicGeometry.Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :
            (X.openCoverOfISupEqTop U hU).J = s
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_map {s : Type u_1} (X : AlgebraicGeometry.Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) (i : s) :
            (X.openCoverOfISupEqTop U hU).map i = (U i)
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_obj {s : Type u_1} (X : AlgebraicGeometry.Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) (i : s) :
            (X.openCoverOfISupEqTop U hU).obj i = (U i)
            @[deprecated AlgebraicGeometry.Scheme.openCoverOfISupEqTop]
            def AlgebraicGeometry.Scheme.openCoverOfSuprEqTop {s : Type u_1} (X : AlgebraicGeometry.Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :
            X.OpenCover

            Alias of AlgebraicGeometry.Scheme.openCoverOfISupEqTop.


            If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

            Equations
            Instances For
              def AlgebraicGeometry.opensRestrict {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
              (↑U).Opens { V : X.Opens // V U }

              The open sets of an open subscheme corresponds to the open sets containing in the subset.

              Equations
              Instances For
                @[simp]
                theorem AlgebraicGeometry.opensRestrict_apply_coe_coe {X : AlgebraicGeometry.Scheme} (U : X.Opens) (a✝ : (↑U).Opens) :
                @[simp]
                theorem AlgebraicGeometry.opensRestrict_symm_apply_coe {X : AlgebraicGeometry.Scheme} (U : X.Opens) (a✝ : { V : X.Opens // V U }) :
                ((AlgebraicGeometry.opensRestrict U).symm a✝) = U.base ⁻¹' ((Equiv.subtypeEquivProp ).symm a✝)
                theorem AlgebraicGeometry.Scheme.map_basicOpen {X : AlgebraicGeometry.Scheme} (U : X.Opens) (r : ((↑U).presheaf.obj (Opposite.op ))) :
                (AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj ((↑U).basicOpen r) = X.basicOpen ((X.presheaf.map (CategoryTheory.eqToHom ).op) r)
                @[deprecated AlgebraicGeometry.Scheme.map_basicOpen]
                theorem AlgebraicGeometry.Scheme.map_basicOpen' {X : AlgebraicGeometry.Scheme} (U : X.Opens) (r : ((↑U).presheaf.obj (Opposite.op ))) :
                (AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj ((↑U).basicOpen r) = X.basicOpen ((X.presheaf.map (CategoryTheory.eqToHom ).op) r)

                Alias of AlgebraicGeometry.Scheme.map_basicOpen.

                theorem AlgebraicGeometry.Scheme.Opens.ι_image_basicOpen {X : AlgebraicGeometry.Scheme} (U : X.Opens) (r : ((↑U).presheaf.obj (Opposite.op ))) :
                (AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj ((↑U).basicOpen r) = X.basicOpen r
                theorem AlgebraicGeometry.Scheme.map_basicOpen_map {X : AlgebraicGeometry.Scheme} (U : X.Opens) (r : (X.presheaf.obj (Opposite.op U))) :
                (AlgebraicGeometry.Scheme.Hom.opensFunctor U).obj ((↑U).basicOpen (U.topIso.inv r)) = X.basicOpen r
                noncomputable def AlgebraicGeometry.Scheme.homOfLE (X : AlgebraicGeometry.Scheme) {U V : X.Opens} (e : U V) :
                U V

                If U ≤ V, then U is also a subscheme of V.

                Equations
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_ι (X : AlgebraicGeometry.Scheme) {U V : X.Opens} (e : U V) :
                  CategoryTheory.CategoryStruct.comp (X.homOfLE e) V = U
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_homOfLE (X : AlgebraicGeometry.Scheme) {U V W : X.Opens} (e₁ : U V) (e₂ : V W) :
                  CategoryTheory.CategoryStruct.comp (X.homOfLE e₁) (X.homOfLE e₂) = X.homOfLE
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_homOfLE_assoc (X : AlgebraicGeometry.Scheme) {U V W : X.Opens} (e₁ : U V) (e₂ : V W) {Z : AlgebraicGeometry.Scheme} (h : W Z) :
                  theorem AlgebraicGeometry.Scheme.homOfLE_base {X : AlgebraicGeometry.Scheme} {U V : X.Opens} (e : U V) :
                  (X.homOfLE e).base = (TopologicalSpace.Opens.toTopCat X.toPresheafedSpace).map (CategoryTheory.homOfLE e)
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_apply {X : AlgebraicGeometry.Scheme} {U V : X.Opens} (e : U V) (x : U) :
                  ((X.homOfLE e).base x) = x
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_app {X : AlgebraicGeometry.Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) :
                  AlgebraicGeometry.Scheme.Hom.app (X.homOfLE e) W = X.presheaf.map (CategoryTheory.homOfLE ).op
                  Equations
                  • =

                  The functor taking open subsets of X to open subschemes of X.

                  Equations
                  Instances For
                    @[simp]
                    theorem AlgebraicGeometry.Scheme.restrictFunctor_obj_left {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
                    (X.restrictFunctor.obj U).left = U
                    @[simp]
                    theorem AlgebraicGeometry.Scheme.restrictFunctor_obj_hom {X : AlgebraicGeometry.Scheme} (U : X.Opens) :
                    (X.restrictFunctor.obj U).hom = U
                    @[simp]
                    theorem AlgebraicGeometry.Scheme.restrictFunctor_map_left {X : AlgebraicGeometry.Scheme} {U V : X.Opens} (i : U V) :
                    (X.restrictFunctor.map i).left = X.homOfLE
                    @[deprecated AlgebraicGeometry.Scheme.homOfLE_ι]

                    Alias of AlgebraicGeometry.Scheme.homOfLE_ι.

                    @[deprecated AlgebraicGeometry.Scheme.homOfLE_base]
                    theorem AlgebraicGeometry.Scheme.restrictFunctor_map_base {X : AlgebraicGeometry.Scheme} {U V : X.Opens} (e : U V) :
                    (X.homOfLE e).base = (TopologicalSpace.Opens.toTopCat X.toPresheafedSpace).map (CategoryTheory.homOfLE e)

                    Alias of AlgebraicGeometry.Scheme.homOfLE_base.

                    @[deprecated AlgebraicGeometry.Scheme.ι_image_homOfLE_le_ι_image]

                    Alias of AlgebraicGeometry.Scheme.ι_image_homOfLE_le_ι_image.

                    @[deprecated AlgebraicGeometry.Scheme.homOfLE_app]
                    theorem AlgebraicGeometry.Scheme.restrictFunctor_map_app {X : AlgebraicGeometry.Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) :
                    AlgebraicGeometry.Scheme.Hom.app (X.homOfLE e) W = X.presheaf.map (CategoryTheory.homOfLE ).op

                    Alias of AlgebraicGeometry.Scheme.homOfLE_app.

                    The functor that restricts to open subschemes and then takes global section is isomorphic to the structure sheaf.

                    Equations
                    Instances For
                      @[simp]
                      theorem AlgebraicGeometry.Scheme.restrictFunctorΓ_hom_app {X : AlgebraicGeometry.Scheme} (X✝ : X.Opensᵒᵖ) :
                      AlgebraicGeometry.Scheme.restrictFunctorΓ.hom.app X✝ = X.presheaf.map (CategoryTheory.eqToHom )
                      @[simp]
                      theorem AlgebraicGeometry.Scheme.restrictFunctorΓ_inv_app {X : AlgebraicGeometry.Scheme} (X✝ : X.Opensᵒᵖ) :
                      AlgebraicGeometry.Scheme.restrictFunctorΓ.inv.app X✝ = X.presheaf.map (CategoryTheory.eqToHom )
                      noncomputable def AlgebraicGeometry.Scheme.restrictRestrictComm (X : AlgebraicGeometry.Scheme) (U V : X.Opens) :
                      ((TopologicalSpace.Opens.map U.base).obj V) ((TopologicalSpace.Opens.map V.base).obj U)

                      X ∣_ U ∣_ V is isomorphic to X ∣_ V ∣_ U

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        noncomputable def AlgebraicGeometry.Scheme.Hom.isoImage {X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [AlgebraicGeometry.IsOpenImmersion f] (U : X.Opens) :
                        U (f.opensFunctor.obj U)

                        If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

                        Equations
                        Instances For
                          @[deprecated AlgebraicGeometry.Scheme.Hom.isoImage]
                          def AlgebraicGeometry.Scheme.restrictRestrict {X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [AlgebraicGeometry.IsOpenImmersion f] (U : X.Opens) :
                          U (f.opensFunctor.obj U)

                          Alias of AlgebraicGeometry.Scheme.Hom.isoImage.


                          If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

                          Equations
                          Instances For

                            (⊤ : X.Opens) as a scheme is isomorphic to X.

                            Equations
                            • X.topIso = { hom := , inv := { toHom_1 := X.restrictTopIso.inv }, hom_inv_id := , inv_hom_id := }
                            Instances For
                              noncomputable def AlgebraicGeometry.Scheme.isoOfEq (X : AlgebraicGeometry.Scheme) {U V : X.Opens} (e : U = V) :
                              U V

                              If U = V, then X ∣_ U is isomorphic to X ∣_ V.

                              Equations
                              Instances For
                                @[simp]
                                theorem AlgebraicGeometry.Scheme.isoOfEq_hom_ι (X : AlgebraicGeometry.Scheme) {U V : X.Opens} (e : U = V) :
                                CategoryTheory.CategoryStruct.comp (X.isoOfEq e).hom V = U
                                @[simp]
                                theorem AlgebraicGeometry.Scheme.isoOfEq_inv_ι (X : AlgebraicGeometry.Scheme) {U V : X.Opens} (e : U = V) :
                                CategoryTheory.CategoryStruct.comp (X.isoOfEq e).inv U = V
                                @[deprecated AlgebraicGeometry.Scheme.isoOfEq]
                                def AlgebraicGeometry.Scheme.restrictIsoOfEq (X : AlgebraicGeometry.Scheme) {U V : X.Opens} (e : U = V) :
                                U V

                                Alias of AlgebraicGeometry.Scheme.isoOfEq.


                                If U = V, then X ∣_ U is isomorphic to X ∣_ V.

                                Equations
                                Instances For
                                  noncomputable def AlgebraicGeometry.Scheme.Hom.preimageIso {X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [CategoryTheory.IsIso f] (U : Y.Opens) :
                                  ((TopologicalSpace.Opens.map f.base).obj U) U

                                  The restriction of an isomorphism onto an open set.

                                  Equations
                                  Instances For
                                    @[deprecated AlgebraicGeometry.Scheme.Hom.preimageIso]

                                    Alias of AlgebraicGeometry.Scheme.Hom.preimageIso.


                                    The restriction of an isomorphism onto an open set.

                                    Equations
                                    Instances For

                                      Given a morphism f : X ⟶ Y and an open set U ⊆ Y, we have X ×[Y] U ≅ X |_{f ⁻¹ U}

                                      Equations
                                      Instances For
                                        def AlgebraicGeometry.morphismRestrict {X Y : AlgebraicGeometry.Scheme} (f : X Y) (U : Y.Opens) :
                                        ((TopologicalSpace.Opens.map f.base).obj U) U

                                        The restriction of a morphism X ⟶ Y onto X |_{f ⁻¹ U} ⟶ Y |_ U.

                                        Equations
                                        Instances For

                                          the notation for restricting a morphism of scheme to an open subset of the target scheme

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            theorem AlgebraicGeometry.morphismRestrict_base_coe {X Y : AlgebraicGeometry.Scheme} (f : X Y) (U : Y.Opens) (x : (↑((TopologicalSpace.Opens.map f.base).obj U)).toPresheafedSpace) :
                                            Coe.coe ((f ∣_ U).base x) = f.base x
                                            theorem AlgebraicGeometry.morphismRestrict_base {X Y : AlgebraicGeometry.Scheme} (f : X Y) (U : Y.Opens) :
                                            (f ∣_ U).base = U.carrier.restrictPreimage f.base

                                            Restricting a morphism onto the image of an open immersion is isomorphic to the base change along the immersion.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              The restrictions onto two equal open sets are isomorphic. This currently has bad defeqs when unfolded, but it should not matter for now. Replace this definition if better defeqs are needed.

                                              Equations
                                              Instances For

                                                Restricting a morphism twice is isomorphic to one restriction.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  def AlgebraicGeometry.morphismRestrictRestrictBasicOpen {X Y : AlgebraicGeometry.Scheme} (f : X Y) (U : Y.Opens) (r : (Y.presheaf.obj (Opposite.op U))) :
                                                  CategoryTheory.Arrow.mk (f ∣_ U ∣_ (↑U).basicOpen ((Y.presheaf.map (CategoryTheory.eqToHom ).op) r)) CategoryTheory.Arrow.mk (f ∣_ Y.basicOpen r)

                                                  Restricting a morphism twice onto a basic open set is isomorphic to one restriction.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    The stalk map of a restriction of a morphism is isomorphic to the stalk map of the original map.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      def AlgebraicGeometry.Scheme.Hom.resLE {X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V (TopologicalSpace.Opens.map f.base).obj U) :
                                                      V U

                                                      The restriction of a morphism f : X ⟶ Y to open sets on the source and target.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.Hom.map_resLE {X Y : AlgebraicGeometry.Scheme} (f : X Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V' V) :
                                                        @[simp]
                                                        theorem AlgebraicGeometry.Scheme.Hom.resLE_map {X Y : AlgebraicGeometry.Scheme} (f : X Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U U') :
                                                        theorem AlgebraicGeometry.Scheme.Hom.resLE_congr {X Y : AlgebraicGeometry.Scheme} (f : X Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) :
                                                        theorem AlgebraicGeometry.Scheme.Hom.resLE_preimage {X Y : AlgebraicGeometry.Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (O : (↑U).Opens) :
                                                        theorem AlgebraicGeometry.Scheme.Hom.le_preimage_resLE_iff {X Y : AlgebraicGeometry.Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (O : (↑U).Opens) (W : (↑V).Opens) :

                                                        f.resLE U V induces f.appLE U V on global sections.

                                                        Equations
                                                        Instances For
                                                          noncomputable def AlgebraicGeometry.Scheme.OpenCover.restrict {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
                                                          (↑U).OpenCover

                                                          The restriction of an open cover to an open subset.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            @[simp]
                                                            theorem AlgebraicGeometry.Scheme.OpenCover.restrict_map {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.J) :
                                                            (𝒰.restrict U).map x✝ = 𝒰.map x✝ ∣_ U
                                                            @[simp]
                                                            theorem AlgebraicGeometry.Scheme.OpenCover.restrict_J {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
                                                            (𝒰.restrict U).J = 𝒰.J
                                                            @[simp]
                                                            theorem AlgebraicGeometry.Scheme.OpenCover.restrict_obj {X : AlgebraicGeometry.Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.J) :
                                                            (𝒰.restrict U).obj x✝ = ((TopologicalSpace.Opens.map (𝒰.map x✝).base).obj U)