Documentation

Mathlib.AlgebraicGeometry.Restrict

Restriction of Schemes and Morphisms #

Main definition #

Open subset of a scheme as a scheme.

Equations
Instances For

    The restriction of a scheme to an open subset.

    Equations
    Instances For
      @[simp]

      The global sections of the restriction is isomorphic to the sections on the open set.

      Equations
      Instances For
        def AlgebraicGeometry.Scheme.Opens.stalkIso {X : Scheme} (U : X.Opens) (x : U) :
        (↑U).presheaf.stalk x X.presheaf.stalk x

        The stalks of an open subscheme are isomorphic to the stalks of the original scheme.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom {X : Scheme} (U : X.Opens) {V : (↑U).Opens} (x : U) (hx : x V) :
          theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv {X : Scheme} (U : X.Opens) (V : (↑U).Opens) (x : U) (hx : x V) :

          If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

          Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_f {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : TopologicalSpace.IsOpenCover U) (i : s) :
            (X.openCoverOfIsOpenCover U hU).f i = (U i).ι
            @[simp]
            theorem AlgebraicGeometry.Scheme.openCoverOfIsOpenCover_X {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : TopologicalSpace.IsOpenCover U) (i : s) :
            (X.openCoverOfIsOpenCover U hU).X i = (U i)
            @[deprecated AlgebraicGeometry.Scheme.openCoverOfIsOpenCover (since := "2025-09-30")]

            Alias of AlgebraicGeometry.Scheme.openCoverOfIsOpenCover.


            If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

            Equations
            Instances For
              def AlgebraicGeometry.opensRestrict {X : Scheme} (U : X.Opens) :
              (↑U).Opens { V : X.Opens // V U }

              The open sets of an open subscheme corresponds to the open sets containing in the subset.

              Equations
              Instances For
                @[simp]
                theorem AlgebraicGeometry.coe_opensRestrict_apply_coe {X : Scheme} (U : X.Opens) (a✝ : (↑U).Opens) :
                ((opensRestrict U) a✝) = (fun (a : U) => a) '' a✝
                noncomputable def AlgebraicGeometry.Scheme.homOfLE (X : Scheme) {U V : X.Opens} (e : U V) :
                U V

                If U ≤ V, then U is also a subscheme of V.

                Equations
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_homOfLE (X : Scheme) {U V W : X.Opens} (e₁ : U V) (e₂ : V W) :
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_apply {X : Scheme} {U V : X.Opens} (e : U V) (x : U) :
                  @[simp]
                  theorem AlgebraicGeometry.Scheme.homOfLE_app {X : Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) :
                  def AlgebraicGeometry.Scheme.Opens.iSupOpenCover {J : Type u_1} {X : Scheme} (U : JX.Opens) :
                  (↑(⨆ (i : J), U i)).OpenCover

                  The open cover of ⋃ Vᵢ by Vᵢ.

                  Equations
                  Instances For

                    The functor taking open subsets of X to open subschemes of X.

                    Equations
                    Instances For

                      The functor that restricts to open subschemes and then takes global section is isomorphic to the structure sheaf.

                      Equations
                      Instances For

                        X ∣_ U ∣_ V is isomorphic to X ∣_ V ∣_ U

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          noncomputable def AlgebraicGeometry.Scheme.Hom.isoImage {X Y : Scheme} (f : X.Hom Y) [IsOpenImmersion f] (U : X.Opens) :
                          U (f.opensFunctor.obj U)

                          If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

                          Equations
                          Instances For

                            If f : X ⟶ Y is an open immersion, then X is isomorphic to its image in Y.

                            Equations
                            Instances For

                              (⊤ : X.Opens) as a scheme is isomorphic to X.

                              Equations
                              Instances For
                                noncomputable def AlgebraicGeometry.Scheme.isoOfEq (X : Scheme) {U V : X.Opens} (e : U = V) :
                                U V

                                If U = V, then X ∣_ U is isomorphic to X ∣_ V.

                                Equations
                                Instances For
                                  theorem AlgebraicGeometry.Scheme.isoOfEq_hom (X : Scheme) {U V : X.Opens} (e : U = V) :
                                  (X.isoOfEq e).hom = X.homOfLE
                                  theorem AlgebraicGeometry.Scheme.isoOfEq_inv (X : Scheme) {U V : X.Opens} (e : U = V) :
                                  (X.isoOfEq e).inv = X.homOfLE

                                  The restriction of an isomorphism onto an open set.

                                  Equations
                                  Instances For
                                    noncomputable def AlgebraicGeometry.Scheme.Opens.isoOfLE {X : Scheme} {U V : X.Opens} (hUV : U V) :

                                    If U ≤ V are opens of X, the restriction of U to V is isomorphic to U.

                                    Equations
                                    Instances For

                                      For f : R, D(f) as an open subscheme of Spec R is isomorphic to Spec R[1/f].

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        Given a morphism f : X ⟶ Y and an open set U ⊆ Y, we have X ×[Y] U ≅ X |_{f ⁻¹ U}

                                        Equations
                                        Instances For

                                          The restriction of a morphism X ⟶ Y onto X |_{f ⁻¹ U} ⟶ Y |_ U.

                                          Equations
                                          Instances For

                                            the notation for restricting a morphism of scheme to an open subset of the target scheme

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              theorem AlgebraicGeometry.isPullback_opens_inf_le {X : Scheme} {U V W : X.Opens} (hU : U W) (hV : V W) :

                                              Restricting a morphism onto the image of an open immersion is isomorphic to the base change along the immersion.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                The restrictions onto two equal open sets are isomorphic. This currently has bad defeqs when unfolded, but it should not matter for now. Replace this definition if better defeqs are needed.

                                                Equations
                                                Instances For

                                                  Restricting a morphism twice is isomorphic to one restriction.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Restricting a morphism twice onto a basic open set is isomorphic to one restriction.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      The stalk map of a restriction of a morphism is isomorphic to the stalk map of the original map.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        def AlgebraicGeometry.Scheme.Hom.resLE {X Y : Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V (TopologicalSpace.Opens.map f.base).obj U) :
                                                        V U

                                                        The restriction of a morphism f : X ⟶ Y to open sets on the source and target.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.Hom.map_resLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V' V) :
                                                          @[simp]
                                                          theorem AlgebraicGeometry.Scheme.Hom.resLE_map {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U U') :
                                                          theorem AlgebraicGeometry.Scheme.Hom.resLE_congr {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : CategoryTheory.MorphismProperty Scheme) :
                                                          P (resLE f U V e) P (resLE f U' V' )
                                                          theorem AlgebraicGeometry.Scheme.Hom.resLE_appLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (O : (↑U).Opens) (W : (↑V).Opens) (e' : W (TopologicalSpace.Opens.map (resLE f U V e).base).obj O) :
                                                          appLE (resLE f U V e) O W e' = appLE f ((opensFunctor U.ι).obj O) ((opensFunctor V.ι).obj W)

                                                          The stalk map of f.resLE U V at x : V is is the stalk map of f at x.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For

                                                            f.resLE U V induces f.appLE U V on global sections.

                                                            Equations
                                                            Instances For
                                                              noncomputable def AlgebraicGeometry.Scheme.OpenCover.restrict {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
                                                              (↑U).OpenCover

                                                              The restriction of an open cover to an open subset.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                @[simp]
                                                                theorem AlgebraicGeometry.Scheme.OpenCover.restrict_X {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.I₀) :
                                                                (𝒰.restrict U).X x✝ = ((TopologicalSpace.Opens.map (𝒰.f x✝).base).obj U)
                                                                @[simp]
                                                                theorem AlgebraicGeometry.Scheme.OpenCover.restrict_f {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.I₀) :
                                                                (𝒰.restrict U).f x✝ = 𝒰.f x✝ ∣_ U
                                                                @[simp]