Documentation

Mathlib.AlgebraicGeometry.Over

Typeclasses for S-schemes and S-morphisms #

We define these as thin wrappers around CategoryTheory/Comma/OverClass.

Main definition #

@[reducible, inline]

X.Over S is the typeclass containing the data of a structure morphism X ↘ S : X ⟶ S.

Equations
Instances For
    @[reducible, inline]

    X.CanonicallyOver S is the typeclass containing the data of a structure morphism X ↘ S : X ⟶ S, and that S is (uniquely) inferrable from the structure of X.

    Equations
    Instances For
      @[reducible, inline]
      abbrev AlgebraicGeometry.Scheme.Hom.IsOver {X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (S : AlgebraicGeometry.Scheme) [X.Over S] [Y.Over S] :

      Given X.Over S and Y.Over S and f : X ⟶ Y, f.IsOver S is the typeclass asserting f commutes with the structure morphisms.

      Equations
      Instances For

        Also note the existence of CategoryTheory.IsOverTower X Y S.

        @[reducible, inline]

        Given X.Over S, this is the bundled object of Over S.

        Equations
        Instances For
          @[reducible, inline]

          Given a morphism X ⟶ Y with f.IsOver S, this is the bundled morphism in Over S.

          Equations
          Instances For