Typeclasses for S
-schemes and S
-morphisms #
We define these as thin wrappers around CategoryTheory/Comma/OverClass
.
Main definition #
AlgebraicGeometry.Scheme.Over
:X.Over S
equipsX
with aS
-scheme structure.X ↘ S : X ⟶ S
is the structure morphism.AlgebraicGeometry.Scheme.Hom.IsOver
:f.IsOver S
asserts thatf
is aS
-morphism.
@[reducible, inline]
X.Over S
is the typeclass containing the data of a structure morphism X ↘ S : X ⟶ S
.
Equations
- X.Over S = CategoryTheory.OverClass X S
Instances For
@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.CanonicallyOver
{X : AlgebraicGeometry.Scheme}
(S : AlgebraicGeometry.Scheme)
:
Type u
X.CanonicallyOver S
is the typeclass containing the data of a structure morphism X ↘ S : X ⟶ S
,
and that S
is (uniquely) inferrable from the structure of X
.
Instances For
@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.Hom.IsOver
{X Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
(S : AlgebraicGeometry.Scheme)
[X.Over S]
[Y.Over S]
:
Given X.Over S
and Y.Over S
and f : X ⟶ Y
,
f.IsOver S
is the typeclass asserting f
commutes with the structure morphisms.
Equations
- f.IsOver S = CategoryTheory.HomIsOver f S
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.isOver_iff
{X Y : AlgebraicGeometry.Scheme}
(S : AlgebraicGeometry.Scheme)
[X.Over S]
[Y.Over S]
{f : X ⟶ Y}
:
AlgebraicGeometry.Scheme.Hom.IsOver f S ↔ CategoryTheory.CategoryStruct.comp f (Y ↘ S) = X ↘ S
Also note the existence of CategoryTheory.IsOverTower X Y S
.
@[reducible, inline]
Given X.Over S
, this is the bundled object of Over S
.
Equations
- X.asOver S = CategoryTheory.OverClass.asOver X S
Instances For
@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.Hom.asOver
{X Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
(S : AlgebraicGeometry.Scheme)
[X.Over S]
[Y.Over S]
[f.IsOver S]
:
Given a morphism X ⟶ Y
with f.IsOver S
, this is the bundled morphism in Over S
.
Equations
- f.asOver S = CategoryTheory.OverClass.asOverHom S f