# Documentation

Mathlib.RingTheory.Localization.Away.Basic

# Localizations away from an element #

## Main definitions #

• IsLocalization.Away (x : R) S expresses that S is a localization away from x, as an abbreviation of IsLocalization (Submonoid.powers x) S.
• exists_reduced_fraction' (hb : b ≠ 0) produces a reduced fraction of the form b = a * x^n for some n : ℤ and some a : R that is not divisible by x.

## Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

## Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

@[inline, reducible]
abbrev IsLocalization.Away {R : Type u_1} [] (x : R) (S : Type u_4) [] [Algebra R S] :

Given x : R, the typeclass IsLocalization.Away x S states that S is isomorphic to the localization of R at the submonoid generated by x.

Instances For
noncomputable def IsLocalization.Away.invSelf {R : Type u_1} [] {S : Type u_2} [] [Algebra R S] (x : R) [] :
S

Given x : R and a localization map F : R →+* S away from x, invSelf is (F x)⁻¹.

Instances For
@[simp]
theorem IsLocalization.Away.mul_invSelf {R : Type u_1} [] {S : Type u_2} [] [Algebra R S] (x : R) [] :
↑() x * = 1
noncomputable def IsLocalization.Away.lift {R : Type u_1} [] {S : Type u_2} [] [Algebra R S] {P : Type u_3} [] (x : R) [] {g : R →+* P} (hg : IsUnit (g x)) :
S →+* P

Given x : R, a localization map F : R →+* S away from x, and a map of CommSemirings g : R →+* P such that g x is invertible, the homomorphism induced from S to P sending z : S to g y * (g x)⁻ⁿ, where y : R, n : ℕ are such that z = F y * (F x)⁻ⁿ.

Instances For
@[simp]
theorem IsLocalization.Away.AwayMap.lift_eq {R : Type u_1} [] {S : Type u_2} [] [Algebra R S] {P : Type u_3} [] (x : R) [] {g : R →+* P} (hg : IsUnit (g x)) (a : R) :
↑() (↑() a) = g a
@[simp]
theorem IsLocalization.Away.AwayMap.lift_comp {R : Type u_1} [] {S : Type u_2} [] [Algebra R S] {P : Type u_3} [] (x : R) [] {g : R →+* P} (hg : IsUnit (g x)) :
RingHom.comp () () = g
noncomputable def IsLocalization.Away.awayToAwayRight {R : Type u_1} [] {S : Type u_2} [] [Algebra R S] {P : Type u_3} [] (x : R) [] (y : R) [Algebra R P] [IsLocalization.Away (x * y) P] :
S →+* P

Given x y : R and localizations S, P away from x and x * y respectively, the homomorphism induced from S to P.

Instances For
noncomputable def IsLocalization.Away.map {R : Type u_1} [] (S : Type u_2) [] [Algebra R S] {P : Type u_3} [] (Q : Type u_4) [] [Algebra P Q] (f : R →+* P) (r : R) [] [IsLocalization.Away (f r) Q] :
S →+* Q

Given a map f : R →+* S and an element r : R, we may construct a map Rᵣ →+* Sᵣ.

Instances For
noncomputable def IsLocalization.atUnits (R : Type u_1) [] (M : ) (S : Type u_2) [] [Algebra R S] [] (H : ∀ (x : { x // x M }), IsUnit x) :

The localization at a module of units is isomorphic to the ring.

Instances For
noncomputable def IsLocalization.atUnit (R : Type u_1) [] (S : Type u_2) [] [Algebra R S] (x : R) (e : ) [] :

The localization away from a unit is isomorphic to the ring.

Instances For
noncomputable def IsLocalization.atOne (R : Type u_1) [] (S : Type u_2) [] [Algebra R S] [] :

The localization at one is isomorphic to the ring.

Instances For
theorem IsLocalization.away_of_isUnit_of_bijective {R : Type u_4} (S : Type u_5) [] [] [Algebra R S] {r : R} (hr : ) (H : Function.Bijective ↑()) :
@[inline, reducible]
noncomputable abbrev Localization.awayLift {R : Type u_1} [] {P : Type u_3} [] (f : R →+* P) (r : R) (hr : IsUnit (f r)) :

Given a map f : R →+* S and an element r : R, such that f r is invertible, we may construct a map Rᵣ →+* S.

Instances For
@[inline, reducible]
noncomputable abbrev Localization.awayMap {R : Type u_1} [] {P : Type u_3} [] (f : R →+* P) (r : R) :

Given a map f : R →+* S and an element r : R, we may construct a map Rᵣ →+* Sᵣ.

Instances For
noncomputable def selfZpow {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] (m : ) :
B

selfZpow x (m : ℤ) is x ^ m as an element of the localization away from x.

Instances For
theorem selfZpow_of_nonneg {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] {n : } (hn : 0 n) :
selfZpow x B n = ↑() x ^
@[simp]
theorem selfZpow_coe_nat {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] (d : ) :
selfZpow x B d = ↑() x ^ d
@[simp]
theorem selfZpow_zero {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] :
selfZpow x B 0 = 1
theorem selfZpow_of_neg {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] {n : } (hn : n < 0) :
theorem selfZpow_of_nonpos {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] {n : } (hn : n 0) :
@[simp]
theorem selfZpow_neg_coe_nat {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] (d : ) :
selfZpow x B (-d) = IsLocalization.mk' B 1 ()
@[simp]
theorem selfZpow_sub_cast_nat {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] {n : } {m : } :
selfZpow x B (n - m) = IsLocalization.mk' B (x ^ n) ()
@[simp]
theorem selfZpow_add {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] {n : } {m : } :
selfZpow x B (n + m) = selfZpow x B n * selfZpow x B m
theorem selfZpow_mul_neg {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] (d : ) :
selfZpow x B d * selfZpow x B (-d) = 1
theorem selfZpow_neg_mul {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] (d : ) :
selfZpow x B (-d) * selfZpow x B d = 1
theorem selfZpow_pow_sub {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] (a : R) (b : B) (m : ) (d : ) :
selfZpow x B (m - d) * = b selfZpow x B m * = selfZpow x B d * b
theorem exists_reduced_fraction' {R : Type u_1} [] (x : R) (B : Type u_2) [] [Algebra R B] [] [] {b : B} (hb : b 0) (hx : ) :
a n, ¬x a selfZpow x B n * ↑() a = b