Documentation

Mathlib.RingTheory.Localization.Away.Basic

Localizations away from an element #

Main definitions #

Implementation notes #

See Mathlib/RingTheory/Localization/Basic.lean for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

@[reducible, inline]
abbrev IsLocalization.Away {R : Type u_1} [CommSemiring R] (x : R) (S : Type u_4) [CommSemiring S] [Algebra R S] :

Given x : R, the typeclass IsLocalization.Away x S states that S is isomorphic to the localization of R at the submonoid generated by x.

Equations
Instances For
    noncomputable def IsLocalization.Away.invSelf {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] (x : R) [IsLocalization.Away x S] :
    S

    Given x : R and a localization map F : R →+* S away from x, invSelf is (F x)⁻¹.

    Equations
    Instances For
      noncomputable def IsLocalization.Away.sec {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] (x : R) [IsLocalization.Away x S] (s : S) :

      For s : S with S being the localization of R away from x, this is a choice of (r, n) : R × ℕ such that s * algebraMap R S (x ^ n) = algebraMap R S r.

      Equations
      Instances For
        theorem IsLocalization.Away.sec_spec {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] (x : R) [IsLocalization.Away x S] (s : S) :
        noncomputable def IsLocalization.Away.lift {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (x : R) [IsLocalization.Away x S] {g : R →+* P} (hg : IsUnit (g x)) :
        S →+* P

        Given x : R, a localization map F : R →+* S away from x, and a map of CommSemirings g : R →+* P such that g x is invertible, the homomorphism induced from S to P sending z : S to g y * (g x)⁻ⁿ, where y : R, n : ℕ are such that z = F y * (F x)⁻ⁿ.

        Equations
        Instances For
          @[simp]
          theorem IsLocalization.Away.AwayMap.lift_eq {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (x : R) [IsLocalization.Away x S] {g : R →+* P} (hg : IsUnit (g x)) (a : R) :
          @[simp]
          theorem IsLocalization.Away.AwayMap.lift_comp {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (x : R) [IsLocalization.Away x S] {g : R →+* P} (hg : IsUnit (g x)) :
          noncomputable def IsLocalization.Away.awayToAwayRight {R : Type u_1} [CommSemiring R] {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (x : R) [IsLocalization.Away x S] (y : R) [Algebra R P] [IsLocalization.Away (x * y) P] :
          S →+* P

          Given x y : R and localizations S, P away from x and x * y respectively, the homomorphism induced from S to P.

          Equations
          Instances For
            noncomputable def IsLocalization.Away.map {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (f : R →+* P) (r : R) [IsLocalization.Away r S] [IsLocalization.Away (f r) Q] :
            S →+* Q

            Given a map f : R →+* S and an element r : R, we may construct a map Rᵣ →+* Sᵣ.

            Equations
            Instances For
              instance IsLocalization.Away.instMapRingHomPowersOfCoe {A : Type u_5} [CommRing A] {B : Type u_6} [CommRing B] (Bₚ : Type u_8) [CommRing Bₚ] [Algebra B Bₚ] {f : A →+* B} (a : A) [IsLocalization.Away (f a) Bₚ] :
              Equations
              • =
              noncomputable def IsLocalization.Away.mapₐ {R : Type u_1} [CommSemiring R] {A : Type u_5} [CommRing A] [Algebra R A] {B : Type u_6} [CommRing B] [Algebra R B] (Aₚ : Type u_7) [CommRing Aₚ] [Algebra A Aₚ] [Algebra R Aₚ] [IsScalarTower R A Aₚ] (Bₚ : Type u_8) [CommRing Bₚ] [Algebra B Bₚ] [Algebra R Bₚ] [IsScalarTower R B Bₚ] (f : A →ₐ[R] B) (a : A) [IsLocalization.Away a Aₚ] [IsLocalization.Away (f a) Bₚ] :
              Aₚ →ₐ[R] Bₚ

              Given a algebra map f : A →ₐ[R] B and an element a : A, we may construct a map Aₐ →ₐ[R] Bₐ.

              Equations
              Instances For
                @[simp]
                theorem IsLocalization.Away.mapₐ_apply {R : Type u_1} [CommSemiring R] {A : Type u_5} [CommRing A] [Algebra R A] {B : Type u_6} [CommRing B] [Algebra R B] (Aₚ : Type u_7) [CommRing Aₚ] [Algebra A Aₚ] [Algebra R Aₚ] [IsScalarTower R A Aₚ] (Bₚ : Type u_8) [CommRing Bₚ] [Algebra B Bₚ] [Algebra R Bₚ] [IsScalarTower R B Bₚ] (f : A →ₐ[R] B) (a : A) [IsLocalization.Away a Aₚ] [IsLocalization.Away (f a) Bₚ] (x : Aₚ) :
                (IsLocalization.Away.mapₐ Aₚ Bₚ f a) x = (IsLocalization.Away.map Aₚ Bₚ f.toRingHom a) x
                theorem IsLocalization.Away.mapₐ_injective_of_injective {R : Type u_1} [CommSemiring R] {A : Type u_5} [CommRing A] [Algebra R A] {B : Type u_6} [CommRing B] [Algebra R B] {Aₚ : Type u_7} [CommRing Aₚ] [Algebra A Aₚ] [Algebra R Aₚ] [IsScalarTower R A Aₚ] {Bₚ : Type u_8} [CommRing Bₚ] [Algebra B Bₚ] [Algebra R Bₚ] [IsScalarTower R B Bₚ] {f : A →ₐ[R] B} (a : A) [IsLocalization.Away a Aₚ] [IsLocalization.Away (f a) Bₚ] (hf : Function.Injective f) :
                theorem IsLocalization.Away.mapₐ_surjective_of_surjective {R : Type u_1} [CommSemiring R] {A : Type u_5} [CommRing A] [Algebra R A] {B : Type u_6} [CommRing B] [Algebra R B] {Aₚ : Type u_7} [CommRing Aₚ] [Algebra A Aₚ] [Algebra R Aₚ] [IsScalarTower R A Aₚ] {Bₚ : Type u_8} [CommRing Bₚ] [Algebra B Bₚ] [Algebra R Bₚ] [IsScalarTower R B Bₚ] {f : A →ₐ[R] B} (a : A) [IsLocalization.Away a Aₚ] [IsLocalization.Away (f a) Bₚ] (hf : Function.Surjective f) :
                noncomputable def IsLocalization.atUnit (R : Type u_1) [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (x : R) (e : IsUnit x) [IsLocalization.Away x S] :

                The localization away from a unit is isomorphic to the ring.

                Equations
                Instances For
                  noncomputable def IsLocalization.atOne (R : Type u_1) [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization.Away 1 S] :

                  The localization at one is isomorphic to the ring.

                  Equations
                  Instances For
                    theorem IsLocalization.away_of_isUnit_of_bijective {R : Type u_4} (S : Type u_5) [CommRing R] [CommRing S] [Algebra R S] {r : R} (hr : IsUnit r) (H : Function.Bijective (algebraMap R S)) :
                    instance IsLocalization.away_fst {R : Type u_4} {S : Type u_5} [CommRing R] [CommRing S] :
                    Equations
                    • =
                    instance IsLocalization.away_snd {R : Type u_4} {S : Type u_5} [CommRing R] [CommRing S] :
                    Equations
                    • =
                    @[reducible, inline]
                    noncomputable abbrev Localization.awayLift {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (f : R →+* P) (r : R) (hr : IsUnit (f r)) :

                    Given a map f : R →+* S and an element r : R, such that f r is invertible, we may construct a map Rᵣ →+* S.

                    Equations
                    Instances For
                      @[reducible, inline]
                      noncomputable abbrev Localization.awayMap {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (f : R →+* P) (r : R) :

                      Given a map f : R →+* S and an element r : R, we may construct a map Rᵣ →+* Sᵣ.

                      Equations
                      Instances For
                        @[reducible, inline]
                        noncomputable abbrev Localization.awayMapₐ {R : Type u_1} [CommSemiring R] {A : Type u_4} [CommRing A] [Algebra R A] {B : Type u_5} [CommRing B] [Algebra R B] (f : A →ₐ[R] B) (a : A) :

                        Given a map f : A →ₐ[R] B and an element a : A, we may construct a map Aₐ →ₐ[R] Bₐ.

                        Equations
                        Instances For
                          noncomputable def selfZPow {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (m : ) :
                          B

                          selfZPow x (m : ℤ) is x ^ m as an element of the localization away from x.

                          Equations
                          Instances For
                            theorem selfZPow_of_nonneg {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] {n : } (hn : 0 n) :
                            selfZPow x B n = (algebraMap R B) x ^ n.natAbs
                            @[simp]
                            theorem selfZPow_natCast {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (d : ) :
                            selfZPow x B d = (algebraMap R B) x ^ d
                            @[simp]
                            theorem selfZPow_zero {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] :
                            selfZPow x B 0 = 1
                            theorem selfZPow_of_neg {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] {n : } (hn : n < 0) :
                            theorem selfZPow_of_nonpos {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] {n : } (hn : n 0) :
                            @[simp]
                            theorem selfZPow_neg_natCast {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (d : ) :
                            @[simp]
                            theorem selfZPow_sub_natCast {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] {n : } {m : } :
                            selfZPow x B (n - m) = IsLocalization.mk' B (x ^ n) (Submonoid.pow x m)
                            @[deprecated selfZPow_natCast]
                            theorem selfZPow_coe_nat {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (d : ) :
                            selfZPow x B d = (algebraMap R B) x ^ d

                            Alias of selfZPow_natCast.

                            @[deprecated selfZPow_neg_natCast]
                            theorem selfZPow_neg_coe_nat {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (d : ) :

                            Alias of selfZPow_neg_natCast.

                            @[deprecated selfZPow_sub_natCast]
                            theorem selfZPow_sub_cast_nat {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] {n : } {m : } :
                            selfZPow x B (n - m) = IsLocalization.mk' B (x ^ n) (Submonoid.pow x m)

                            Alias of selfZPow_sub_natCast.

                            @[simp]
                            theorem selfZPow_add {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] {n : } {m : } :
                            selfZPow x B (n + m) = selfZPow x B n * selfZPow x B m
                            theorem selfZPow_mul_neg {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (d : ) :
                            selfZPow x B d * selfZPow x B (-d) = 1
                            theorem selfZPow_neg_mul {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (d : ) :
                            selfZPow x B (-d) * selfZPow x B d = 1
                            theorem selfZPow_pow_sub {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] (a : R) (b : B) (m : ) (d : ) :
                            selfZPow x B (m - d) * IsLocalization.mk' B a 1 = b selfZPow x B m * IsLocalization.mk' B a 1 = selfZPow x B d * b
                            theorem exists_reduced_fraction' {R : Type u_1} [CommRing R] (x : R) (B : Type u_2) [CommRing B] [Algebra R B] [IsLocalization.Away x B] [IsDomain R] [WfDvdMonoid R] {b : B} (hb : b 0) (hx : Irreducible x) :
                            ∃ (a : R) (n : ), ¬x a selfZPow x B n * (algebraMap R B) a = b