Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Equalizer

Equalizers as pullbacks of products #

Also see CategoryTheory.Limits.Constructions.Equalizers for very similar results.

The equalizer of f g : X ⟶ Y is the pullback of the diagonal map Y ⟶ Y × Y along the map (f, g) : X ⟶ Y × Y.

The coequalizer of f g : X ⟶ Y is the pushout of the diagonal map X ⨿ X ⟶ X along the map (f, g) : X ⨿ X ⟶ Y.

noncomputable def CategoryTheory.Limits.equalizerPullbackMapIso {C : Type u} [Category.{v, u} C] [HasEqualizers C] [HasPullbacks C] {X Y S T : C} {f g : X Y} {s : X S} {t : Y S} (hf : CategoryStruct.comp f t = s) (hg : CategoryStruct.comp g t = s) (v : T S) :

The natural isomorphism eq(f ×[S] T, g ×[S] T) ≅ eq(f, g) ×[S] T.

Equations
  • One or more equations did not get rendered due to their size.
Instances For