Equalizers as pullbacks of products #
Also see CategoryTheory.Limits.Constructions.Equalizers
for very similar results.
theorem
CategoryTheory.Limits.isPullback_equalizer_prod
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f g : X ⟶ Y)
[HasEqualizer f g]
[HasBinaryProduct Y Y]
:
IsPullback (equalizer.ι f g) (CategoryStruct.comp (equalizer.ι f g) f) (prod.lift f g)
(prod.lift (CategoryStruct.id Y) (CategoryStruct.id Y))
The equalizer of f g : X ⟶ Y
is the pullback of the diagonal map Y ⟶ Y × Y
along the map (f, g) : X ⟶ Y × Y
.
theorem
CategoryTheory.Limits.isPushout_coequalizer_coprod
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f g : X ⟶ Y)
[HasCoequalizer f g]
[HasBinaryCoproduct X X]
:
IsPushout (coprod.desc f g) (coprod.desc (CategoryStruct.id X) (CategoryStruct.id X)) (coequalizer.π f g)
(CategoryStruct.comp f (coequalizer.π f g))
The coequalizer of f g : X ⟶ Y
is the pushout of the diagonal map X ⨿ X ⟶ X
along the map (f, g) : X ⨿ X ⟶ Y
.