Valuations on Hahn Series rings #
If Γ
is a LinearOrderedCancelAddCommMonoid
and R
is a domain, then the domain HahnSeries Γ R
admits an additive valuation given by orderTop
.
Main Definitions #
HahnSeries.addVal Γ R
defines anAddValuation
onHahnSeries Γ R
whenΓ
is linearly ordered.
TODO #
- Multiplicative valuations
- Add any API for Laurent series valuations that do not depend on
Γ = ℤ
.
References #
def
HahnSeries.addVal
(Γ : Type u_1)
(R : Type u_2)
[LinearOrderedCancelAddCommMonoid Γ]
[Ring R]
[IsDomain R]
:
AddValuation (HahnSeries Γ R) (WithTop Γ)
The additive valuation on HahnSeries Γ R
, returning the smallest index at which
a Hahn Series has a nonzero coefficient, or ⊤
for the 0 series.
Equations
- HahnSeries.addVal Γ R = AddValuation.of HahnSeries.orderTop ⋯ ⋯ ⋯ ⋯
Instances For
theorem
HahnSeries.addVal_apply
{Γ : Type u_1}
{R : Type u_2}
[LinearOrderedCancelAddCommMonoid Γ]
[Ring R]
[IsDomain R]
{x : HahnSeries Γ R}
:
(HahnSeries.addVal Γ R) x = x.orderTop
@[simp]
theorem
HahnSeries.addVal_apply_of_ne
{Γ : Type u_1}
{R : Type u_2}
[LinearOrderedCancelAddCommMonoid Γ]
[Ring R]
[IsDomain R]
{x : HahnSeries Γ R}
(hx : x ≠ 0)
:
(HahnSeries.addVal Γ R) x = ↑x.order
theorem
HahnSeries.addVal_le_of_coeff_ne_zero
{Γ : Type u_1}
{R : Type u_2}
[LinearOrderedCancelAddCommMonoid Γ]
[Ring R]
[IsDomain R]
{x : HahnSeries Γ R}
{g : Γ}
(h : x.coeff g ≠ 0)
:
(HahnSeries.addVal Γ R) x ≤ ↑g