Documentation

Mathlib.RingTheory.HahnSeries.Valuation

Valuations on Hahn Series rings #

If Γ is a LinearOrderedCancelAddCommMonoid and R is a domain, then the domain HahnSeries Γ R admits an additive valuation given by orderTop.

Main Definitions #

TODO #

References #

The additive valuation on HahnSeries Γ R, returning the smallest index at which a Hahn Series has a nonzero coefficient, or for the 0 series.

Equations
Instances For
    theorem HahnSeries.addVal_apply {Γ : Type u_1} {R : Type u_2} [LinearOrderedCancelAddCommMonoid Γ] [Ring R] [IsDomain R] {x : HahnSeries Γ R} :
    (addVal Γ R) x = x.orderTop
    @[simp]
    theorem HahnSeries.addVal_apply_of_ne {Γ : Type u_1} {R : Type u_2} [LinearOrderedCancelAddCommMonoid Γ] [Ring R] [IsDomain R] {x : HahnSeries Γ R} (hx : x 0) :
    (addVal Γ R) x = x.order
    theorem HahnSeries.addVal_le_of_coeff_ne_zero {Γ : Type u_1} {R : Type u_2} [LinearOrderedCancelAddCommMonoid Γ] [Ring R] [IsDomain R] {x : HahnSeries Γ R} {g : Γ} (h : x.coeff g 0) :
    (addVal Γ R) x g