Documentation

Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.IntegralRepresentation

Integral representations of rpow #

This file contains an integral representation of the rpow function between 0 and 1: we show that there exists a measure on ℝ such that x ^ p = ∫ t, rpowIntegrand₀₁ p t x ∂μ for the integrand rpowIntegrand₀₁ p t x := t ^ p * (t⁻¹ - (t + x)⁻¹).

This representation is useful for showing that rpow is operator monotone and operator concave in this range; that is, cfc rpow is monotone/concave. The integrand can be shown to be operator monotone and concave through direct means, and this integral lifts these properties to rpow.

Notes #

Here we only compute the integral up to a constant, even though the actual constant can be computed via contour integration. We chose to avoid this, as the constant is seldom if ever relevant in applications, and would needlessly complicate the proof.

Main declarations #

TODO #

References #

noncomputable def Real.rpowIntegrand₀₁ (p t x : ) :

Integrand for representing x ↦ x ^ p for p ∈ (0,1)

Equations
Instances For
    theorem Real.rpowIntegrand₀₁_nonneg {p t x : } (hp : 0 < p) (ht : 0 t) (hx : 0 x) :
    theorem Real.rpowIntegrand₀₁_eq_pow_div {p t x : } (hp : p Set.Ioo 0 1) (ht : 0 t) (hx : 0 x) :
    p.rpowIntegrand₀₁ t x = t ^ (p - 1) * x / (t + x)
    theorem Real.rpowIntegrand₀₁_eqOn_pow_div {p x : } (hp : p Set.Ioo 0 1) (hx : 0 x) :
    Set.EqOn (fun (x_1 : ) => p.rpowIntegrand₀₁ x_1 x) (fun (t : ) => t ^ (p - 1) * x / (t + x)) (Set.Ioi 0)
    theorem Real.rpowIntegrand₀₁_apply_mul {p t x : } (hp : p Set.Ioo 0 1) (ht : 0 t) (hx : 0 x) :
    p.rpowIntegrand₀₁ (x * t) x = p.rpowIntegrand₀₁ t 1 * x ^ (p - 1)
    theorem Real.rpowIntegrand₀₁_apply_mul' {p t x : } (hp : p Set.Ioo 0 1) (ht : 0 t) (hx : 0 x) :
    theorem Real.rpowIntegrand₀₁_apply_mul_eqOn_Ici {p x : } (hp : p Set.Ioo 0 1) (hx : 0 x) :
    Set.EqOn (fun (t : ) => p.rpowIntegrand₀₁ (x * t) x * x) (fun (t : ) => p.rpowIntegrand₀₁ t 1 * x ^ p) (Set.Ici 0)
    theorem Real.continuousOn_rpowIntegrand₀₁ {p x : } (hp : p Set.Ioo 0 1) (hx : 0 x) :
    ContinuousOn (fun (x_1 : ) => p.rpowIntegrand₀₁ x_1 x) (Set.Ioi 0)
    theorem Real.rpowIntegrand₀₁_le_rpow_sub_two_mul_self {p t x : } (hp : p Set.Ioo 0 1) (ht : 0 < t) (hx : 0 x) :
    p.rpowIntegrand₀₁ t x t ^ (p - 2) * x
    theorem Real.rpowIntegrand₀₁_le_rpow_sub_one {p t x : } (hp : p Set.Ioo 0 1) (ht : 0 t) (hx : 0 x) :
    p.rpowIntegrand₀₁ t x t ^ (p - 1)
    theorem Real.rpowIntegrand₀₁_one_ge_rpow_sub_two {p t : } (hp : p Set.Ioo 0 1) (ht : 1 t) :
    1 / 2 * t ^ (p - 2) p.rpowIntegrand₀₁ t 1
    theorem Real.le_integral_rpowIntegrand₀₁_one {p : } (hp : p Set.Ioo 0 1) :
    -1 / (2 * (p - 1)) (t : ) in Set.Ioi 0, p.rpowIntegrand₀₁ t 1
    theorem Real.rpow_eq_const_mul_integral {p x : } (hp : p Set.Ioo 0 1) (hx : 0 x) :

    The integral representation of the function x ↦ x^p (where p ∈ (0, 1)) .

    theorem Real.exists_measure_rpow_eq_integral {p : } (hp : p Set.Ioo 0 1) :
    ∃ (μ : MeasureTheory.Measure ), (∀ᵐ (t : ) μ, 0 < t) ∀ (x : ), 0 xx ^ p = (t : ), p.rpowIntegrand₀₁ t x μ

    The integral representation of the function x ↦ x^p (where p ∈ (0, 1)) .