Documentation

Mathlib.Analysis.SpecialFunctions.ImproperIntegrals

Evaluation of specific improper integrals #

This file contains some integrability results, and evaluations of integrals, over or over half-infinite intervals in .

See also #

theorem integrableOn_Ioi_rpow_of_lt {a : } (ha : a < -1) {c : } (hc : 0 < c) :

If 0 < c, then (fun t : ℝ ↦ t ^ a) is integrable on (c, ∞) for all a < -1.

theorem integrableOn_Ioi_rpow_iff {s t : } (ht : 0 < t) :

The real power function with any exponent is not integrable on (0, +∞).

theorem setIntegral_Ioi_zero_rpow (s : ) :
(x : ) in Set.Ioi 0, x ^ s = 0
theorem integral_Ioi_rpow_of_lt {a : } (ha : a < -1) {c : } (hc : 0 < c) :
(t : ) in Set.Ioi c, t ^ a = -c ^ (a + 1) / (a + 1)
theorem integrableOn_Ioi_cpow_of_lt {a : } (ha : a.re < -1) {c : } (hc : 0 < c) :
theorem integrableOn_Ioi_cpow_iff {s : } {t : } (ht : 0 < t) :

The complex power function with any exponent is not integrable on (0, +∞).

theorem setIntegral_Ioi_zero_cpow (s : ) :
(x : ) in Set.Ioi 0, x ^ s = 0
theorem integral_Ioi_cpow_of_lt {a : } (ha : a.re < -1) {c : } (hc : 0 < c) :
(t : ) in Set.Ioi c, t ^ a = -c ^ (a + 1) / (a + 1)
@[simp]
@[simp]