Documentation

Mathlib.Analysis.SpecialFunctions.JapaneseBracket

Japanese Bracket #

In this file, we show that Japanese bracket $(1 + \|x\|^2)^{1/2}$ can be estimated from above and below by $1 + \|x\|$. The functions $(1 + \|x\|^2)^{-r/2}$ and $(1 + |x|)^{-r}$ are integrable provided that r is larger than the dimension.

Main statements #

theorem sqrt_one_add_norm_sq_le {E : Type u_1} [NormedAddCommGroup E] (x : E) :
(1 + x ^ 2) 1 + x
theorem rpow_neg_one_add_norm_sq_le {E : Type u_1} [NormedAddCommGroup E] {r : } (x : E) (hr : 0 < r) :
(1 + x ^ 2) ^ (-r / 2) 2 ^ (r / 2) * (1 + x) ^ (-r)
theorem le_rpow_one_add_norm_iff_norm_le {E : Type u_1} [NormedAddCommGroup E] {r t : } (hr : 0 < r) (ht : 0 < t) (x : E) :
t (1 + x) ^ (-r) x t ^ (-r⁻¹) - 1
theorem closedBall_rpow_sub_one_eq_empty_aux (E : Type u_1) [NormedAddCommGroup E] {r t : } (hr : 0 < r) (ht : 1 < t) :
theorem finite_integral_rpow_sub_one_pow_aux {r : } (n : ) (hnr : n < r) :
∫⁻ (x : ) in Set.Ioc 0 1, ENNReal.ofReal ((x ^ (-r⁻¹) - 1) ^ n) <
theorem finite_integral_one_add_norm {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] [MeasurableSpace E] [BorelSpace E] {μ : MeasureTheory.Measure E} [μ.IsAddHaarMeasure] {r : } (hnr : (Module.finrank E) < r) :
∫⁻ (x : E), ENNReal.ofReal ((1 + x) ^ (-r)) μ <
theorem integrable_one_add_norm {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] [MeasurableSpace E] [BorelSpace E] {μ : MeasureTheory.Measure E} [μ.IsAddHaarMeasure] {r : } (hnr : (Module.finrank E) < r) :
MeasureTheory.Integrable (fun (x : E) => (1 + x) ^ (-r)) μ
theorem integrable_rpow_neg_one_add_norm_sq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] [MeasurableSpace E] [BorelSpace E] {μ : MeasureTheory.Measure E} [μ.IsAddHaarMeasure] {r : } (hnr : (Module.finrank E) < r) :
MeasureTheory.Integrable (fun (x : E) => (1 + x ^ 2) ^ (-r / 2)) μ