Documentation

Mathlib.Analysis.SpecialFunctions.Integrability.Basic

Integrability of Special Functions #

This file establishes basic facts about the interval integrability of special functions, including powers and the logarithm.

See intervalIntegrable_rpow' for a version with a weaker hypothesis on r, but assuming the measure is volume.

theorem intervalIntegral.intervalIntegrable_rpow' {a b r : } (h : -1 < r) :

See intervalIntegrable_rpow for a version applying to any locally finite measure, but with a stronger hypothesis on r.

The power function x ↦ x^s is integrable on (0, t) iff -1 < s.

theorem intervalIntegral.intervalIntegrable_cpow {a b : } {μ : MeasureTheory.Measure } [MeasureTheory.IsLocallyFiniteMeasure μ] {r : } (h : 0 r.re 0Set.uIcc a b) :
IntervalIntegrable (fun (x : ) => x ^ r) μ a b

See intervalIntegrable_cpow' for a version with a weaker hypothesis on r, but assuming the measure is volume.

theorem intervalIntegral.intervalIntegrable_cpow' {a b : } {r : } (h : -1 < r.re) :
IntervalIntegrable (fun (x : ) => x ^ r) MeasureTheory.volume a b

See intervalIntegrable_cpow for a version applying to any locally finite measure, but with a stronger hypothesis on r.

theorem intervalIntegral.integrableOn_Ioo_cpow_iff {s : } {t : } (ht : 0 < t) :

The complex power function x ↦ x^s is integrable on (0, t) iff -1 < s.re.

theorem intervalIntegral.intervalIntegrable_one_div {a b : } {f : } {μ : MeasureTheory.Measure } [MeasureTheory.IsLocallyFiniteMeasure μ] (h : xSet.uIcc a b, f x 0) (hf : ContinuousOn f (Set.uIcc a b)) :
IntervalIntegrable (fun (x : ) => 1 / f x) μ a b
@[simp]
theorem intervalIntegral.intervalIntegrable_inv {a b : } {f : } {μ : MeasureTheory.Measure } [MeasureTheory.IsLocallyFiniteMeasure μ] (h : xSet.uIcc a b, f x 0) (hf : ContinuousOn f (Set.uIcc a b)) :
IntervalIntegrable (fun (x : ) => (f x)⁻¹) μ a b
@[simp]
theorem IntervalIntegrable.log {a b : } {f : } {μ : MeasureTheory.Measure } [MeasureTheory.IsLocallyFiniteMeasure μ] (hf : ContinuousOn f (Set.uIcc a b)) (h : xSet.uIcc a b, f x 0) :
IntervalIntegrable (fun (x : ) => Real.log (f x)) μ a b
@[simp]

The real logarithm is interval integrable (with respect to every locally finite measure) over every interval that does not contain zero. See intervalIntegrable_log' for a version without any hypothesis on the interval, but assuming the measure is the volume.

@[simp]

The real logarithm is interval integrable (with respect to the volume measure) on every interval. See intervalIntegrable_log for a version applying to any locally finite measure, but with an additional hypothesis on the interval.