Documentation

Mathlib.Order.Interval.Set.UnorderedInterval

Intervals without endpoints ordering #

In any lattice α, we define uIcc a b to be Icc (a ⊓ b) (a ⊔ b), which in a linear order is the set of elements lying between a and b.

Icc a b requires the assumption a ≤ b to be meaningful, which is sometimes inconvenient. The interval as defined in this file is always the set of things lying between a and b, regardless of the relative order of a and b.

For real numbers, uIcc a b is the same as segment ℝ a b.

In a product or pi type, uIcc a b is the smallest box containing a and b. For example, uIcc (1, -1) (-1, 1) = Icc (-1, -1) (1, 1) is the square of vertices (1, -1), (-1, -1), (-1, 1), (1, 1).

In Finset α (seen as a hypercube of dimension Fintype.card α), uIcc a b is the smallest subcube containing both a and b.

Notation #

We use the localized notation [[a, b]] for uIcc a b. One can open the locale Interval to make the notation available.

def Set.uIcc {α : Type u_1} [Lattice α] (a b : α) :
Set α

uIcc a b is the set of elements lying between a and b, with a and b included. Note that we define it more generally in a lattice as Set.Icc (a ⊓ b) (a ⊔ b). In a product type, uIcc corresponds to the bounding box of the two elements.

Equations
Instances For

    [[a, b]] denotes the set of elements lying between a and b, inclusive.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Set.dual_uIcc {α : Type u_1} [Lattice α] (a b : α) :
      Set.uIcc (OrderDual.toDual a) (OrderDual.toDual b) = OrderDual.ofDual ⁻¹' Set.uIcc a b
      @[simp]
      theorem Set.uIcc_of_le {α : Type u_1} [Lattice α] {a b : α} (h : a b) :
      @[simp]
      theorem Set.uIcc_of_ge {α : Type u_1} [Lattice α] {a b : α} (h : b a) :
      theorem Set.uIcc_comm {α : Type u_1} [Lattice α] (a b : α) :
      theorem Set.uIcc_of_lt {α : Type u_1} [Lattice α] {a b : α} (h : a < b) :
      theorem Set.uIcc_of_gt {α : Type u_1} [Lattice α] {a b : α} (h : b < a) :
      theorem Set.uIcc_self {α : Type u_1} [Lattice α] {a : α} :
      Set.uIcc a a = {a}
      @[simp]
      theorem Set.nonempty_uIcc {α : Type u_1} [Lattice α] {a b : α} :
      (Set.uIcc a b).Nonempty
      theorem Set.Icc_subset_uIcc {α : Type u_1} [Lattice α] {a b : α} :
      theorem Set.Icc_subset_uIcc' {α : Type u_1} [Lattice α] {a b : α} :
      @[simp]
      theorem Set.left_mem_uIcc {α : Type u_1} [Lattice α] {a b : α} :
      @[simp]
      theorem Set.right_mem_uIcc {α : Type u_1} [Lattice α] {a b : α} :
      theorem Set.mem_uIcc_of_le {α : Type u_1} [Lattice α] {a b x : α} (ha : a x) (hb : x b) :
      theorem Set.mem_uIcc_of_ge {α : Type u_1} [Lattice α] {a b x : α} (hb : b x) (ha : x a) :
      theorem Set.uIcc_subset_uIcc {α : Type u_1} [Lattice α] {a₁ a₂ b₁ b₂ : α} (h₁ : a₁ Set.uIcc a₂ b₂) (h₂ : b₁ Set.uIcc a₂ b₂) :
      Set.uIcc a₁ b₁ Set.uIcc a₂ b₂
      theorem Set.uIcc_subset_Icc {α : Type u_1} [Lattice α] {a₁ a₂ b₁ b₂ : α} (ha : a₁ Set.Icc a₂ b₂) (hb : b₁ Set.Icc a₂ b₂) :
      Set.uIcc a₁ b₁ Set.Icc a₂ b₂
      theorem Set.uIcc_subset_uIcc_iff_mem {α : Type u_1} [Lattice α] {a₁ a₂ b₁ b₂ : α} :
      Set.uIcc a₁ b₁ Set.uIcc a₂ b₂ a₁ Set.uIcc a₂ b₂ b₁ Set.uIcc a₂ b₂
      theorem Set.uIcc_subset_uIcc_iff_le' {α : Type u_1} [Lattice α] {a₁ a₂ b₁ b₂ : α} :
      Set.uIcc a₁ b₁ Set.uIcc a₂ b₂ a₂ b₂ a₁ b₁ a₁ b₁ a₂ b₂
      theorem Set.uIcc_subset_uIcc_right {α : Type u_1} [Lattice α] {a b x : α} (h : x Set.uIcc a b) :
      theorem Set.uIcc_subset_uIcc_left {α : Type u_1} [Lattice α] {a b x : α} (h : x Set.uIcc a b) :
      theorem Set.bdd_below_bdd_above_iff_subset_uIcc {α : Type u_1} [Lattice α] (s : Set α) :
      BddBelow s BddAbove s ∃ (a : α) (b : α), s Set.uIcc a b
      @[simp]
      theorem Set.uIcc_prod_uIcc {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (a₁ a₂ : α) (b₁ b₂ : β) :
      Set.uIcc a₁ a₂ ×ˢ Set.uIcc b₁ b₂ = Set.uIcc (a₁, b₁) (a₂, b₂)
      theorem Set.uIcc_prod_eq {α : Type u_1} {β : Type u_2} [Lattice α] [Lattice β] (a b : α × β) :
      Set.uIcc a b = Set.uIcc a.1 b.1 ×ˢ Set.uIcc a.2 b.2
      theorem Set.eq_of_mem_uIcc_of_mem_uIcc {α : Type u_1} [DistribLattice α] {a b c : α} (ha : a Set.uIcc b c) (hb : b Set.uIcc a c) :
      a = b
      theorem Set.eq_of_mem_uIcc_of_mem_uIcc' {α : Type u_1} [DistribLattice α] {a b c : α} :
      b Set.uIcc a cc Set.uIcc a bb = c
      theorem Set.uIcc_injective_right {α : Type u_1} [DistribLattice α] (a : α) :
      Function.Injective fun (b : α) => Set.uIcc b a
      theorem MonotoneOn.mapsTo_uIcc {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : MonotoneOn f (Set.uIcc a b)) :
      Set.MapsTo f (Set.uIcc a b) (Set.uIcc (f a) (f b))
      theorem AntitoneOn.mapsTo_uIcc {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : AntitoneOn f (Set.uIcc a b)) :
      Set.MapsTo f (Set.uIcc a b) (Set.uIcc (f a) (f b))
      theorem Monotone.mapsTo_uIcc {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : Monotone f) :
      Set.MapsTo f (Set.uIcc a b) (Set.uIcc (f a) (f b))
      theorem Antitone.mapsTo_uIcc {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : Antitone f) :
      Set.MapsTo f (Set.uIcc a b) (Set.uIcc (f a) (f b))
      theorem MonotoneOn.image_uIcc_subset {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : MonotoneOn f (Set.uIcc a b)) :
      f '' Set.uIcc a b Set.uIcc (f a) (f b)
      theorem AntitoneOn.image_uIcc_subset {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : AntitoneOn f (Set.uIcc a b)) :
      f '' Set.uIcc a b Set.uIcc (f a) (f b)
      theorem Monotone.image_uIcc_subset {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : Monotone f) :
      f '' Set.uIcc a b Set.uIcc (f a) (f b)
      theorem Antitone.image_uIcc_subset {α : Type u_1} {β : Type u_2} [LinearOrder α] [Lattice β] {f : αβ} {a b : α} (hf : Antitone f) :
      f '' Set.uIcc a b Set.uIcc (f a) (f b)
      theorem Set.Icc_min_max {α : Type u_1} [LinearOrder α] {a b : α} :
      Set.Icc (a b) (a b) = Set.uIcc a b
      theorem Set.uIcc_of_not_le {α : Type u_1} [LinearOrder α] {a b : α} (h : ¬a b) :
      theorem Set.uIcc_of_not_ge {α : Type u_1} [LinearOrder α] {a b : α} (h : ¬b a) :
      theorem Set.uIcc_eq_union {α : Type u_1} [LinearOrder α] {a b : α} :
      theorem Set.mem_uIcc {α : Type u_1} [LinearOrder α] {a b c : α} :
      a Set.uIcc b c b a a c c a a b
      theorem Set.not_mem_uIcc_of_lt {α : Type u_1} [LinearOrder α] {a b c : α} (ha : c < a) (hb : c < b) :
      cSet.uIcc a b
      theorem Set.not_mem_uIcc_of_gt {α : Type u_1} [LinearOrder α] {a b c : α} (ha : a < c) (hb : b < c) :
      cSet.uIcc a b
      theorem Set.uIcc_subset_uIcc_iff_le {α : Type u_1} [LinearOrder α] {a₁ a₂ b₁ b₂ : α} :
      Set.uIcc a₁ b₁ Set.uIcc a₂ b₂ a₂ b₂ a₁ b₁ a₁ b₁ a₂ b₂
      theorem Set.uIcc_subset_uIcc_union_uIcc {α : Type u_1} [LinearOrder α] {a b c : α} :

      A sort of triangle inequality.

      theorem Set.monotone_or_antitone_iff_uIcc {α : Type u_1} {β : Type u_2} [LinearOrder α] [LinearOrder β] {f : αβ} :
      Monotone f Antitone f ∀ (a b c : α), c Set.uIcc a bf c Set.uIcc (f a) (f b)
      theorem Set.monotoneOn_or_antitoneOn_iff_uIcc {α : Type u_1} {β : Type u_2} [LinearOrder α] [LinearOrder β] {f : αβ} {s : Set α} :
      MonotoneOn f s AntitoneOn f s as, bs, cs, c Set.uIcc a bf c Set.uIcc (f a) (f b)
      def Set.uIoc {α : Type u_1} [LinearOrder α] :
      ααSet α

      The open-closed uIcc with unordered bounds.

      Equations
      Instances For

        Ι a b denotes the open-closed interval with unordered bounds. Here, Ι is a capital iota, distinguished from a capital i.

        Equations
        Instances For
          @[simp]
          theorem Set.uIoc_of_le {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
          Ι a b = Set.Ioc a b
          @[simp]
          theorem Set.uIoc_of_ge {α : Type u_1} [LinearOrder α] {a b : α} (h : b a) :
          Ι a b = Set.Ioc b a
          theorem Set.uIoc_eq_union {α : Type u_1} [LinearOrder α] {a b : α} :
          Ι a b = Set.Ioc a b Set.Ioc b a
          theorem Set.mem_uIoc {α : Type u_1} [LinearOrder α] {a b c : α} :
          a Ι b c b < a a c c < a a b
          theorem Set.not_mem_uIoc {α : Type u_1} [LinearOrder α] {a b c : α} :
          aΙ b c a b a c c < a b < a
          @[simp]
          theorem Set.left_mem_uIoc {α : Type u_1} [LinearOrder α] {a b : α} :
          a Ι a b b < a
          @[simp]
          theorem Set.right_mem_uIoc {α : Type u_1} [LinearOrder α] {a b : α} :
          b Ι a b a < b
          theorem Set.forall_uIoc_iff {α : Type u_1} [LinearOrder α] {a b : α} {P : αProp} :
          (∀ xΙ a b, P x) (∀ xSet.Ioc a b, P x) xSet.Ioc b a, P x
          theorem Set.uIoc_subset_uIoc_of_uIcc_subset_uIcc {α : Type u_1} [LinearOrder α] {a b c d : α} (h : Set.uIcc a b Set.uIcc c d) :
          Ι a b Ι c d
          theorem Set.uIoc_comm {α : Type u_1} [LinearOrder α] (a b : α) :
          Ι a b = Ι b a
          theorem Set.Ioc_subset_uIoc {α : Type u_1} [LinearOrder α] {a b : α} :
          Set.Ioc a b Ι a b
          theorem Set.Ioc_subset_uIoc' {α : Type u_1} [LinearOrder α] {a b : α} :
          Set.Ioc a b Ι b a
          theorem Set.uIoc_subset_uIcc {α : Type u_1} [LinearOrder α] {a b : α} :
          Ι a b Set.uIcc a b
          theorem Set.eq_of_mem_uIoc_of_mem_uIoc {α : Type u_1} [LinearOrder α] {a b c : α} :
          a Ι b cb Ι a ca = b
          theorem Set.eq_of_mem_uIoc_of_mem_uIoc' {α : Type u_1} [LinearOrder α] {a b c : α} :
          b Ι a cc Ι a bb = c
          theorem Set.eq_of_not_mem_uIoc_of_not_mem_uIoc {α : Type u_1} [LinearOrder α] {a b c : α} (ha : a c) (hb : b c) :
          aΙ b cbΙ a ca = b
          theorem Set.uIoc_injective_right {α : Type u_1} [LinearOrder α] (a : α) :
          Function.Injective fun (b : α) => Ι b a
          def Set.uIoo {α : Type u_1} [LinearOrder α] (a b : α) :
          Set α

          uIoo a b is the set of elements lying between a and b, with a and b not included. Note that we define it more generally in a lattice as Set.Ioo (a ⊓ b) (a ⊔ b). In a product type, uIoo corresponds to the bounding box of the two elements.

          Equations
          Instances For
            @[simp]
            theorem Set.dual_uIoo {α : Type u_1} [LinearOrder α] (a b : α) :
            Set.uIoo (OrderDual.toDual a) (OrderDual.toDual b) = OrderDual.ofDual ⁻¹' Set.uIoo a b
            @[simp]
            theorem Set.uIoo_of_le {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
            @[simp]
            theorem Set.uIoo_of_ge {α : Type u_1} [LinearOrder α] {a b : α} (h : b a) :
            theorem Set.uIoo_comm {α : Type u_1} [LinearOrder α] (a b : α) :
            theorem Set.uIoo_of_lt {α : Type u_1} [LinearOrder α] {a b : α} (h : a < b) :
            theorem Set.uIoo_of_gt {α : Type u_1} [LinearOrder α] {a b : α} (h : b < a) :
            theorem Set.uIoo_self {α : Type u_1} [LinearOrder α] {a : α} :
            theorem Set.Ioo_subset_uIoo {α : Type u_1} [LinearOrder α] {a b : α} :
            theorem Set.Ioo_subset_uIoo' {α : Type u_1} [LinearOrder α] {a b : α} :

            Same as Ioo_subset_uIoo but with Ioo a b replaced by Ioo b a.

            theorem Set.mem_uIoo_of_lt {α : Type u_1} [LinearOrder α] {a b x : α} (ha : a < x) (hb : x < b) :
            theorem Set.mem_uIoo_of_gt {α : Type u_1} [LinearOrder α] {a b x : α} (hb : b < x) (ha : x < a) :
            theorem Set.Ioo_min_max {α : Type u_1} [LinearOrder α] {a b : α} :
            Set.Ioo (a b) (a b) = Set.uIoo a b
            theorem Set.uIoo_of_not_le {α : Type u_1} [LinearOrder α] {a b : α} (h : ¬a b) :
            theorem Set.uIoo_of_not_ge {α : Type u_1} [LinearOrder α] {a b : α} (h : ¬b a) :
            theorem Set.uIoo_subset_uIcc {α : Type u_3} [LinearOrder α] (a b : α) :