Interval properties in linear orders #
Since every pair of elements are comparable in a linear order, intervals over them are better behaved. This file collects their properties under this assumption.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.Ioo_subset_Ioo_iff
{α : Type u_1}
[LinearOrder α]
{a₁ a₂ b₁ b₂ : α}
[DenselyOrdered α]
(h₁ : a₁ < b₁)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Two infinite intervals #
@[simp]
@[simp]
@[simp]
A finite and an infinite interval #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
An infinite and a finite interval #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Two finite intervals, I?o
and Ic?
#
Two finite intervals, I?c
and Io?
#
Two finite intervals with a common point #
Intersection, difference, complement #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]