Documentation

Mathlib.Order.MinMax

max and min #

This file proves basic properties about maxima and minima on a LinearOrder.

Tags #

min, max

theorem le_min_iff {α : Type u} [LinearOrder α] {a b c : α} :
c a b c a c b
theorem le_max_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b c a b a c
theorem min_le_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b c a c b c
theorem max_le_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b c a c b c
theorem lt_min_iff {α : Type u} [LinearOrder α] {a b c : α} :
a < b c a < b a < c
theorem lt_max_iff {α : Type u} [LinearOrder α] {a b c : α} :
a < b c a < b a < c
theorem min_lt_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b < c a < c b < c
theorem max_lt_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b < c a < c b < c
theorem max_le_max {α : Type u} [LinearOrder α] {a b c d : α} :
a cb da b c d
theorem max_le_max_left {α : Type u} [LinearOrder α] {a b : α} (c : α) (h : a b) :
c a c b
theorem max_le_max_right {α : Type u} [LinearOrder α] {a b : α} (c : α) (h : a b) :
a c b c
theorem min_le_min {α : Type u} [LinearOrder α] {a b c d : α} :
a cb da b c d
theorem min_le_min_left {α : Type u} [LinearOrder α] {a b : α} (c : α) (h : a b) :
c a c b
theorem min_le_min_right {α : Type u} [LinearOrder α] {a b : α} (c : α) (h : a b) :
a c b c
theorem le_max_of_le_left {α : Type u} [LinearOrder α] {a b c : α} :
a ba b c
theorem le_max_of_le_right {α : Type u} [LinearOrder α] {a b c : α} :
a ca b c
theorem lt_max_of_lt_left {α : Type u} [LinearOrder α] {a b c : α} (h : a < b) :
a < b c
theorem lt_max_of_lt_right {α : Type u} [LinearOrder α] {a b c : α} (h : a < c) :
a < b c
theorem min_le_of_left_le {α : Type u} [LinearOrder α] {a b c : α} :
a ca b c
theorem min_le_of_right_le {α : Type u} [LinearOrder α] {a b c : α} :
b ca b c
theorem min_lt_of_left_lt {α : Type u} [LinearOrder α] {a b c : α} (h : a < c) :
a b < c
theorem min_lt_of_right_lt {α : Type u} [LinearOrder α] {a b c : α} (h : b < c) :
a b < c
theorem max_min_distrib_left {α : Type u} [LinearOrder α] (a b c : α) :
a b c = (a b) (a c)
theorem max_min_distrib_right {α : Type u} [LinearOrder α] (a b c : α) :
a b c = (a c) (b c)
theorem min_max_distrib_left {α : Type u} [LinearOrder α] (a b c : α) :
a (b c) = a b a c
theorem min_max_distrib_right {α : Type u} [LinearOrder α] (a b c : α) :
(a b) c = a c b c
theorem min_le_max {α : Type u} [LinearOrder α] {a b : α} :
a b a b
theorem min_eq_left_iff {α : Type u} [LinearOrder α] {a b : α} :
a b = a a b
theorem min_eq_right_iff {α : Type u} [LinearOrder α] {a b : α} :
a b = b b a
theorem max_eq_left_iff {α : Type u} [LinearOrder α] {a b : α} :
a b = a b a
theorem max_eq_right_iff {α : Type u} [LinearOrder α] {a b : α} :
a b = b a b
theorem min_cases {α : Type u} [LinearOrder α] (a b : α) :
a b = a a b a b = b b < a

For elements a and b of a linear order, either min a b = a and a ≤ b, or min a b = b and b < a. Use cases on this lemma to automate linarith in inequalities

theorem max_cases {α : Type u} [LinearOrder α] (a b : α) :
a b = a b a a b = b a < b

For elements a and b of a linear order, either max a b = a and b ≤ a, or max a b = b and a < b. Use cases on this lemma to automate linarith in inequalities

theorem min_eq_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b = c a = c a b b = c b a
theorem max_eq_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b = c a = c b a b = c a b
theorem min_lt_min_left_iff {α : Type u} [LinearOrder α] {a b c : α} :
a c < b c a < b a < c
theorem min_lt_min_right_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b < a c b < c b < a
theorem max_lt_max_left_iff {α : Type u} [LinearOrder α] {a b c : α} :
a c < b c a < b c < b
theorem max_lt_max_right_iff {α : Type u} [LinearOrder α] {a b c : α} :
a b < a c b < c a < c
instance max_idem {α : Type u} [LinearOrder α] :

An instance asserting that max a a = a

Equations
  • =
instance min_idem {α : Type u} [LinearOrder α] :

An instance asserting that min a a = a

Equations
  • =
theorem min_lt_max {α : Type u} [LinearOrder α] {a b : α} :
a b < a b a b
theorem max_lt_max {α : Type u} [LinearOrder α] {a b c d : α} (h₁ : a < c) (h₂ : b < d) :
a b < c d
theorem min_lt_min {α : Type u} [LinearOrder α] {a b c d : α} (h₁ : a < c) (h₂ : b < d) :
a b < c d
theorem min_right_comm {α : Type u} [LinearOrder α] (a b c : α) :
a b c = a c b
theorem Max.left_comm {α : Type u} [LinearOrder α] (a b c : α) :
a (b c) = b (a c)
theorem Max.right_comm {α : Type u} [LinearOrder α] (a b c : α) :
a b c = a c b
theorem MonotoneOn.map_max {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {s : Set α} {a b : α} (hf : MonotoneOn f s) (ha : a s) (hb : b s) :
f (a b) = f a f b
theorem MonotoneOn.map_min {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {s : Set α} {a b : α} (hf : MonotoneOn f s) (ha : a s) (hb : b s) :
f (a b) = f a f b
theorem AntitoneOn.map_max {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {s : Set α} {a b : α} (hf : AntitoneOn f s) (ha : a s) (hb : b s) :
f (a b) = f a f b
theorem AntitoneOn.map_min {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {s : Set α} {a b : α} (hf : AntitoneOn f s) (ha : a s) (hb : b s) :
f (a b) = f a f b
theorem Monotone.map_max {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {a b : α} (hf : Monotone f) :
f (a b) = f a f b
theorem Monotone.map_min {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {a b : α} (hf : Monotone f) :
f (a b) = f a f b
theorem Antitone.map_max {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {a b : α} (hf : Antitone f) :
f (a b) = f a f b
theorem Antitone.map_min {α : Type u} {β : Type v} [LinearOrder α] [LinearOrder β] {f : αβ} {a b : α} (hf : Antitone f) :
f (a b) = f a f b
theorem min_choice {α : Type u} [LinearOrder α] (a b : α) :
a b = a a b = b
theorem max_choice {α : Type u} [LinearOrder α] (a b : α) :
a b = a a b = b
theorem le_of_max_le_left {α : Type u} [LinearOrder α] {a b c : α} (h : a b c) :
a c
theorem le_of_max_le_right {α : Type u} [LinearOrder α] {a b c : α} (h : a b c) :
b c
Equations
  • =
Equations
  • =
Equations
  • =
Equations
  • =