Documentation

Mathlib.RingTheory.DividedPowers.Basic

Divided powers #

Let A be a commutative (semi)ring and I be an ideal of A. A divided power structure on I is the datum of operations a n ↦ dpow a n satisfying relations that model the intuitive formula dpow n a = a ^ n / n ! and collected by the structure DividedPowers. The list of axioms is embedded in the structure: To avoid coercions, we rather consider DividedPowers.dpow : ℕ → A → A, extended by 0.

References #

Discussion #

structure DividedPowers {A : Type u_1} [CommSemiring A] (I : Ideal A) :
Type u_1

The divided power structure on an ideal I of a commutative ring A

  • dpow : AA

    The divided power function underlying a divided power structure

  • dpow_null : ∀ {n : } {x : A}, xIself.dpow n x = 0
  • dpow_zero : ∀ {x : A}, x Iself.dpow 0 x = 1
  • dpow_one : ∀ {x : A}, x Iself.dpow 1 x = x
  • dpow_mem : ∀ {n : } {x : A}, n 0x Iself.dpow n x I
  • dpow_add : ∀ (n : ) {x y : A}, x Iy Iself.dpow n (x + y) = kFinset.antidiagonal n, self.dpow k.1 x * self.dpow k.2 y
  • dpow_mul : ∀ (n : ) {a x : A}, x Iself.dpow n (a * x) = a ^ n * self.dpow n x
  • mul_dpow : ∀ (m n : ) {x : A}, x Iself.dpow m x * self.dpow n x = ((m + n).choose m) * self.dpow (m + n) x
  • dpow_comp : ∀ (m : ) {n : } {x : A}, n 0x Iself.dpow m (self.dpow n x) = (m.uniformBell n) * self.dpow (m * n) x
Instances For

    The canonical DividedPowers structure on the zero ideal

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      instance instCoeFunDividedPowersForallNatForall {A : Type u_1} [CommSemiring A] (I : Ideal A) :
      CoeFun (DividedPowers I) fun (x : DividedPowers I) => AA

      The coercion from the divided powers structures to functions

      Equations
      theorem DividedPowers.ext {A : Type u_1} [CommSemiring A] {I : Ideal A} (hI hI' : DividedPowers I) (h_eq : ∀ (n : ) {x : A}, x IhI.dpow n x = hI'.dpow n x) :
      hI = hI'
      theorem DividedPowers.coe_injective {A : Type u_1} [CommSemiring A] (I : Ideal A) :
      Function.Injective fun (h : DividedPowers I) => h.dpow
      theorem DividedPowers.dpow_add' {A : Type u_1} [CommSemiring A] {I : Ideal A} {a b : A} (hI : DividedPowers I) (n : ) (ha : a I) (hb : b I) :
      hI.dpow n (a + b) = kFinset.range (n + 1), hI.dpow k a * hI.dpow (n - k) b

      Variant of DividedPowers.dpow_add with a sum on range (n + 1)

      def DividedPowers.exp {A : Type u_1} [CommSemiring A] {I : Ideal A} (hI : DividedPowers I) (a : A) :

      The exponential series of an element in the context of divided powers, Σ (dpow n a) X ^ n

      Equations
      Instances For
        theorem DividedPowers.exp_add' {A : Type u_1} [CommSemiring A] {a b : A} (dp : AA) (dp_add : ∀ (n : ), dp n (a + b) = kFinset.antidiagonal n, dp k.1 a * dp k.2 b) :
        (PowerSeries.mk fun (n : ) => dp n (a + b)) = (PowerSeries.mk fun (n : ) => dp n a) * PowerSeries.mk fun (n : ) => dp n b

        A more general of DividedPowers.exp_add

        theorem DividedPowers.exp_add {A : Type u_1} [CommSemiring A] {I : Ideal A} {a b : A} (hI : DividedPowers I) (ha : a I) (hb : b I) :
        hI.exp (a + b) = hI.exp a * hI.exp b
        theorem DividedPowers.dpow_smul {A : Type u_1} [CommSemiring A] {I : Ideal A} {a b : A} (hI : DividedPowers I) (n : ) (ha : a I) :
        hI.dpow n (b a) = b ^ n hI.dpow n a
        theorem DividedPowers.dpow_mul_right {A : Type u_1} [CommSemiring A] {I : Ideal A} {a b : A} (hI : DividedPowers I) (n : ) (ha : a I) :
        hI.dpow n (a * b) = hI.dpow n a * b ^ n
        theorem DividedPowers.dpow_smul_right {A : Type u_1} [CommSemiring A] {I : Ideal A} {a b : A} (hI : DividedPowers I) (n : ) (ha : a I) :
        hI.dpow n (a b) = hI.dpow n a b ^ n
        theorem DividedPowers.factorial_mul_dpow_eq_pow {A : Type u_1} [CommSemiring A] {I : Ideal A} {a : A} (hI : DividedPowers I) (n : ) (ha : a I) :
        n.factorial * hI.dpow n a = a ^ n
        theorem DividedPowers.dpow_eval_zero {A : Type u_1} [CommSemiring A] {I : Ideal A} (hI : DividedPowers I) {n : } (hn : n 0) :
        hI.dpow n 0 = 0
        theorem DividedPowers.nilpotent_of_mem_dpIdeal {A : Type u_1} [CommSemiring A] {I : Ideal A} {a : A} {n : } (hn : n 0) (hnI : ∀ {y : A}, y In y = 0) (hI : DividedPowers I) (ha : a I) :
        a ^ n = 0

        If an element of a divided power ideal is killed by multiplication by some nonzero integer n, then its nth power is zero.

        Proposition 1.2.7 of [Ber74], part (i).

        theorem DividedPowers.coincide_on_smul {A : Type u_1} [CommSemiring A] {I : Ideal A} {a : A} (hI : DividedPowers I) {J : Ideal A} (hJ : DividedPowers J) {n : } (ha : a I J) :
        hI.dpow n a = hJ.dpow n a

        If J is another ideal of A with divided powers, then the divided powers of I and J coincide on I • J

        [Ber74], 1.6.1 (ii)

        theorem DividedPowers.prod_dpow {A : Type u_1} [CommSemiring A] {I : Ideal A} {a : A} (hI : DividedPowers I) {ι : Type u_2} {s : Finset ι} (n : ι) (ha : a I) :
        is, hI.dpow (n i) a = (Nat.multinomial s n) * hI.dpow (s.sum n) a

        A product of divided powers is a multinomial coefficient times the divided power

        [Rob65], formula (III')

        theorem DividedPowers.dpow_sum' {A : Type u_1} [CommSemiring A] {M : Type u_2} [AddCommMonoid M] {I : AddSubmonoid M} (dpow : MA) (dpow_zero : ∀ {x : M}, x Idpow 0 x = 1) (dpow_add : ∀ (n : ) {x y : M}, x Iy Idpow n (x + y) = kFinset.antidiagonal n, dpow k.1 x * dpow k.2 y) (dpow_eval_zero : ∀ {n : }, n 0dpow n 0 = 0) {ι : Type u_3} [DecidableEq ι] {s : Finset ι} {x : ιM} (hx : is, x i I) (n : ) :
        dpow n (s.sum x) = ks.sym n, is, dpow (Multiset.count i k) (x i)

        Lemma towards dpow_sum when we only have partial information on a divided power ideal

        theorem DividedPowers.dpow_sum {A : Type u_1} [CommSemiring A] {I : Ideal A} (hI : DividedPowers I) {ι : Type u_2} [DecidableEq ι] {s : Finset ι} {x : ιA} (hx : is, x i I) (n : ) :
        hI.dpow n (s.sum x) = ks.sym n, is, hI.dpow (Multiset.count i k) (x i)

        A “multinomial” theorem for divided powers — without multinomial coefficients

        def DividedPowers.ofRingEquiv {A : Type u_1} {B : Type u_2} [CommSemiring A] {I : Ideal A} [CommSemiring B] {J : Ideal B} {e : A ≃+* B} (h : Ideal.map e I = J) (hI : DividedPowers I) :

        Transfer divided powers under an equivalence

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem DividedPowers.ofRingEquiv_dpow {A : Type u_1} {B : Type u_2} [CommSemiring A] {I : Ideal A} [CommSemiring B] {J : Ideal B} {e : A ≃+* B} (h : Ideal.map e I = J) (hI : DividedPowers I) (n : ) (b : B) :
          (DividedPowers.ofRingEquiv h hI).dpow n b = e (hI.dpow n (e.symm b))
          theorem DividedPowers.ofRingEquiv_dpow_apply {A : Type u_1} {B : Type u_2} [CommSemiring A] {I : Ideal A} [CommSemiring B] {J : Ideal B} {e : A ≃+* B} (h : Ideal.map e I = J) (hI : DividedPowers I) (n : ) (a : A) :
          (DividedPowers.ofRingEquiv h hI).dpow n (e a) = e (hI.dpow n a)
          def DividedPowers.equiv {A : Type u_1} {B : Type u_2} [CommSemiring A] {I : Ideal A} [CommSemiring B] {J : Ideal B} {e : A ≃+* B} (h : Ideal.map e I = J) :

          Transfer divided powers under an equivalence (Equiv version)

          Equations
          Instances For
            theorem DividedPowers.equiv_apply {A : Type u_1} {B : Type u_2} [CommSemiring A] {I : Ideal A} [CommSemiring B] {J : Ideal B} {e : A ≃+* B} (h : Ideal.map e I = J) (hI : DividedPowers I) (n : ) (b : B) :
            ((DividedPowers.equiv h) hI).dpow n b = e (hI.dpow n (e.symm b))
            theorem DividedPowers.equiv_apply' {A : Type u_1} {B : Type u_2} [CommSemiring A] {I : Ideal A} [CommSemiring B] {J : Ideal B} {e : A ≃+* B} (h : Ideal.map e I = J) (hI : DividedPowers I) (n : ) (a : A) :
            ((DividedPowers.equiv h) hI).dpow n (e a) = e (hI.dpow n a)

            Variant of DividedPowers.equiv_apply