The adele ring of a number field #
This file contains the formalisation of the adele ring of a number field as the direct product of the infinite adele ring and the finite adele ring.
Main definitions #
NumberField.AdeleRing Kis the adele ring of a number fieldK.NumberField.AdeleRing.principalSubgroup Kis the subgroup of principal adeles(x)ᵥ.
References #
Tags #
adele ring, number field
The adele ring #
def
NumberField.AdeleRing
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
Type (max u_2 u_2 u_1)
AdeleRing (𝓞 K) K is the adele ring of a number field K.
More generally AdeleRing R K can be used if K is the field of fractions
of the Dedekind domain R. This enables use of rings like AdeleRing ℤ ℚ, which
in practice are easier to work with than AdeleRing (𝓞 ℚ) ℚ.
Note that this definition does not give the correct answer in the function field case.
Equations
Instances For
instance
NumberField.AdeleRing.instCommRing
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
Equations
instance
NumberField.AdeleRing.instInhabited
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
Equations
- NumberField.AdeleRing.instInhabited R K = { default := 0 }
instance
NumberField.AdeleRing.instTopologicalSpace
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
TopologicalSpace (AdeleRing R K)
instance
NumberField.AdeleRing.instIsTopologicalRing
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
IsTopologicalRing (AdeleRing R K)
instance
NumberField.AdeleRing.instAlgebra
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
Equations
@[simp]
theorem
NumberField.AdeleRing.algebraMap_fst_apply
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
(x : K)
(v : InfinitePlace K)
:
@[simp]
theorem
NumberField.AdeleRing.algebraMap_snd_apply
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
(x : K)
(v : IsDedekindDomain.HeightOneSpectrum R)
:
theorem
NumberField.AdeleRing.algebraMap_injective
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
[NumberField K]
:
Function.Injective ⇑(algebraMap K (AdeleRing R K))
@[reducible, inline]
abbrev
NumberField.AdeleRing.principalSubgroup
(R : Type u_1)
(K : Type u_2)
[CommRing R]
[IsDedekindDomain R]
[Field K]
[Algebra R K]
[IsFractionRing R K]
:
AddSubgroup (AdeleRing R K)
The subgroup of principal adeles (x)ᵥ where x ∈ K.