Multiplication by n
in the ring of Witt vectors #
In this file we show that multiplication by n
in the ring of Witt vectors
is a polynomial function. We then use this fact to show that the composition of Frobenius
and Verschiebung is equal to multiplication by p
.
Main declarations #
mulN_isPoly
: multiplication byn
is a polynomial function
References #
wittMulN p n
is the family of polynomials that computes
the coefficients of x * n
in terms of the coefficients of the Witt vector x
.
Equations
- WittVector.wittMulN p 0 = 0
- WittVector.wittMulN p n.succ = fun (k : ℕ) => (MvPolynomial.bind₁ (Function.uncurry ![WittVector.wittMulN p n, MvPolynomial.X])) (WittVector.wittAdd p k)
Instances For
theorem
WittVector.mulN_coeff
{p : ℕ}
{R : Type u_1}
[hp : Fact (Nat.Prime p)]
[CommRing R]
(n : ℕ)
(x : WittVector p R)
(k : ℕ)
:
(x * ↑n).coeff k = (MvPolynomial.aeval x.coeff) (WittVector.wittMulN p n k)
theorem
WittVector.mulN_isPoly
(p : ℕ)
[hp : Fact (Nat.Prime p)]
(n : ℕ)
:
WittVector.IsPoly p fun (x : Type u_2) (_Rcr : CommRing x) (x_1 : WittVector p x) => x_1 * ↑n
Multiplication by n
is a polynomial function.
@[simp]
theorem
WittVector.bind₁_wittMulN_wittPolynomial
(p : ℕ)
[hp : Fact (Nat.Prime p)]
(n k : ℕ)
:
(MvPolynomial.bind₁ (WittVector.wittMulN p n)) (wittPolynomial p ℤ k) = ↑n * wittPolynomial p ℤ k