Unramified algebras over fields #
Main results #
Let K be a field, A be a K-algebra and L be a field extension of K.
Algebra.FormallyUnramified.bijective_of_isAlgClosed_of_isLocalRing: IfAisK-unramified andKis alg-closed, thenK = A.Algebra.FormallyUnramified.isReduced_of_field: IfAisK-unramified thenAis reduced.Algebra.FormallyUnramified.iff_isSeparable:Lis unramified overKiffLis separable overK.
References #
theorem
Algebra.FormallyUnramified.of_isSeparable
(K : Type u_1)
(L : Type u_3)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
:
theorem
Algebra.FormallyUnramified.bijective_of_isAlgClosed_of_isLocalRing
(K : Type u_1)
(A : Type u_2)
[Field K]
[CommRing A]
[Algebra K A]
[FormallyUnramified K A]
[EssFiniteType K A]
[IsAlgClosed K]
[IsLocalRing A]
:
Function.Bijective ⇑(algebraMap K A)
theorem
Algebra.FormallyUnramified.isField_of_isAlgClosed_of_isLocalRing
(K : Type u_1)
(A : Type u_2)
[Field K]
[CommRing A]
[Algebra K A]
[FormallyUnramified K A]
[EssFiniteType K A]
[IsAlgClosed K]
[IsLocalRing A]
:
IsField A
theorem
Algebra.FormallyUnramified.isReduced_of_field
(K : Type u_1)
(A : Type u_2)
[Field K]
[CommRing A]
[Algebra K A]
[FormallyUnramified K A]
[EssFiniteType K A]
:
theorem
Algebra.FormallyUnramified.range_eq_top_of_isPurelyInseparable
(K : Type u_1)
(L : Type u_3)
[Field K]
[Field L]
[Algebra K L]
[FormallyUnramified K L]
[EssFiniteType K L]
[IsPurelyInseparable K L]
:
theorem
Algebra.FormallyUnramified.isSeparable
(K : Type u_1)
(L : Type u_3)
[Field K]
[Field L]
[Algebra K L]
[FormallyUnramified K L]
[EssFiniteType K L]
:
theorem
Algebra.FormallyUnramified.iff_isSeparable
(K : Type u_1)
[Field K]
(L : Type u)
[Field L]
[Algebra K L]
[EssFiniteType K L]
:
theorem
Algebra.IsUnramifiedAt.not_minpoly_sq_dvd
{K : Type u_1}
{A : Type u_2}
[Field K]
[CommRing A]
[Algebra K A]
(Q : Ideal A)
[Q.IsPrime]
[IsUnramifiedAt K Q]
(x : A)
(p : Polynomial K)
(hp₁ : Ideal.span {p} = RingHom.ker (Polynomial.aeval x).toRingHom)
(hp₂ : Function.Surjective ⇑(Polynomial.aeval x))
:
If A = K[X]/⟨p⟩ is unramified at some prime Q, then the minpoly of X in κ(Q)
only divides p once.