Taylor expansions of polynomials #
Main declarations #
Polynomial.taylor
: the Taylor expansion of the polynomialf
atr
Polynomial.taylor_coeff
: thek
th coefficient oftaylor r f
is(Polynomial.hasseDeriv k f).eval r
Polynomial.eq_zero_of_hasseDeriv_eq_zero
: the identity principle: a polynomial is 0 iff all its Hasse derivatives are zero
The Taylor expansion of a polynomial f
at r
.
Equations
- Polynomial.taylor r = { toFun := fun (f : Polynomial R) => f.comp (Polynomial.X + Polynomial.C r), map_add' := ⋯, map_smul' := ⋯ }
Instances For
The k
th coefficient of Polynomial.taylor r f
is (Polynomial.hasseDeriv k f).eval r
.
@[simp]
@[simp]
@[simp]
@[simp]
Polynomial.taylor
as an AlgHom
for commutative semirings
Equations
Instances For
@[simp]
theorem
Polynomial.taylor_injective
{R : Type u_2}
[CommRing R]
(r : R)
:
Function.Injective ⇑(taylor r)
theorem
Polynomial.eq_zero_of_hasseDeriv_eq_zero
{R : Type u_2}
[CommRing R]
(f : Polynomial R)
(r : R)
(h : ∀ (k : ℕ), eval r ((hasseDeriv k) f) = 0)
:
theorem
Polynomial.eval_add_of_sq_eq_zero
{A : Type u_2}
[CommSemiring A]
(p : Polynomial A)
(x y : A)
(hy : y ^ 2 = 0)
: