The derivative map on polynomials #
Main definitions #
Polynomial.derivative
: The formal derivative of polynomials, expressed as a linear map.Polynomial.derivativeFinsupp
: Iterated derivatives as a finite support function.
derivative p
is the formal derivative of the polynomial p
Equations
- Polynomial.derivative = { toFun := fun (p : Polynomial R) => p.sum fun (n : ℕ) (a : R) => Polynomial.C (a * ↑n) * Polynomial.X ^ (n - 1), map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
Polynomial.derivative_of_natDegree_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p.natDegree = 0)
:
@[simp]
theorem
Polynomial.derivative_sum
{R : Type u}
{ι : Type y}
[Semiring R]
{s : Finset ι}
{f : ι → Polynomial R}
:
theorem
Polynomial.iterate_derivative_sum
{R : Type u}
{ι : Type y}
[Semiring R]
(k : ℕ)
(s : Finset ι)
(f : ι → Polynomial R)
:
theorem
Polynomial.derivative_smul
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
:
@[simp]
theorem
Polynomial.iterate_derivative_smul
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
(k : ℕ)
:
@[simp]
theorem
Polynomial.iterate_derivative_C_mul
{R : Type u}
[Semiring R]
(a : R)
(p : Polynomial R)
(k : ℕ)
:
theorem
Polynomial.of_mem_support_derivative
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(h : n ∈ (derivative p).support)
:
theorem
Polynomial.natDegree_derivative_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p.natDegree ≠ 0)
:
theorem
Polynomial.natDegree_iterate_derivative
{R : Type u}
[Semiring R]
(p : Polynomial R)
(k : ℕ)
:
@[simp]
@[simp]
theorem
Polynomial.iterate_derivative_eq_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
{x : ℕ}
(hx : p.natDegree < x)
:
@[simp]
theorem
Polynomial.natDegree_eq_zero_of_derivative_eq_zero
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
{f : Polynomial R}
(h : derivative f = 0)
:
theorem
Polynomial.eq_C_of_derivative_eq_zero
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
{f : Polynomial R}
(h : derivative f = 0)
:
@[simp]
@[simp]
theorem
Polynomial.derivative_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
:
@[simp]
theorem
Polynomial.iterate_derivative_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
(k : ℕ)
:
@[simp]
theorem
Polynomial.iterate_derivative_natCast_mul
{R : Type u}
[Semiring R]
{n k : ℕ}
{f : Polynomial R}
:
theorem
Polynomial.mem_support_derivative
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(n : ℕ)
:
@[simp]
theorem
Polynomial.degree_derivative_eq
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(hp : 0 < p.natDegree)
:
theorem
Polynomial.coeff_iterate_derivative
{R : Type u}
[Semiring R]
{k : ℕ}
(p : Polynomial R)
(m : ℕ)
:
theorem
Polynomial.iterate_derivative_mul
{R : Type u}
[Semiring R]
{n : ℕ}
(p q : Polynomial R)
:
(⇑derivative)^[n] (p * q) = ∑ k ∈ Finset.range n.succ, n.choose k • ((⇑derivative)^[n - k] p * (⇑derivative)^[k] q)
Iterated derivatives as a finite support function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Polynomial.derivativeFinsupp_apply_toFun
{R : Type u}
[Semiring R]
(p : Polynomial R)
(x✝ : ℕ)
:
@[simp]
theorem
Polynomial.support_derivativeFinsupp_subset_range
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(h : p.natDegree < n)
:
@[simp]
@[simp]
@[simp]
theorem
Polynomial.derivativeFinsupp_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
:
derivativeFinsupp (map f p) = Finsupp.mapRange (fun (x : Polynomial R) => map f x) ⋯ (derivativeFinsupp p)
theorem
Polynomial.pow_sub_one_dvd_derivative_of_pow_dvd
{R : Type u}
[CommSemiring R]
{p q : Polynomial R}
{n : ℕ}
(dvd : q ^ n ∣ p)
:
theorem
Polynomial.pow_sub_dvd_iterate_derivative_of_pow_dvd
{R : Type u}
[CommSemiring R]
{p q : Polynomial R}
{n : ℕ}
(m : ℕ)
(dvd : q ^ n ∣ p)
:
theorem
Polynomial.pow_sub_dvd_iterate_derivative_pow
{R : Type u}
[CommSemiring R]
(p : Polynomial R)
(n m : ℕ)
:
theorem
Polynomial.dvd_iterate_derivative_pow
{R : Type u}
[CommSemiring R]
(f : Polynomial R)
(n : ℕ)
{m : ℕ}
(c : R)
(hm : m ≠ 0)
:
theorem
Polynomial.iterate_derivative_X_pow_eq_natCast_mul
{R : Type u}
[CommSemiring R]
(n k : ℕ)
:
Chain rule for formal derivative of polynomials.
theorem
Polynomial.derivative_prod
{R : Type u}
{ι : Type y}
[CommSemiring R]
[DecidableEq ι]
{s : Multiset ι}
{f : ι → Polynomial R}
:
derivative (Multiset.map f s).prod = (Multiset.map (fun (i : ι) => (Multiset.map f (s.erase i)).prod * derivative (f i)) s).sum
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Polynomial.iterate_derivative_intCast_mul
{R : Type u}
[Ring R]
{n : ℤ}
{k : ℕ}
{f : Polynomial R}
:
theorem
Polynomial.eval_multiset_prod_X_sub_C_derivative
{R : Type u}
[CommRing R]
[DecidableEq R]
{S : Multiset R}
{r : R}
(hr : r ∈ S)
:
eval r (derivative (Multiset.map (fun (a : R) => X - C a) S).prod) = (Multiset.map (fun (a : R) => r - a) (S.erase r)).prod
@[simp]
theorem
Polynomial.dvd_derivative_iff
{R : Type u}
[Semiring R]
[NoZeroDivisors R]
{P : Polynomial R}
:
theorem
Polynomial.derivative_pow_eq_zero
{R : Type u}
[CommSemiring R]
[NoZeroDivisors R]
{n : ℕ}
(chn : ↑n ≠ 0)
{a : Polynomial R}
: