The derivative map on polynomials #
Main definitions #
Polynomial.derivative
: The formal derivative of polynomials, expressed as a linear map.Polynomial.derivativeFinsupp
: Iterated derivatives as a finite support function.
derivative p
is the formal derivative of the polynomial p
Equations
- Polynomial.derivative = { toFun := fun (p : Polynomial R) => p.sum fun (n : ℕ) (a : R) => Polynomial.C (a * ↑n) * Polynomial.X ^ (n - 1), map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
Polynomial.iterate_derivative_zero
{R : Type u}
[Semiring R]
{k : ℕ}
:
(⇑derivative)^[k] 0 = 0
@[simp]
theorem
Polynomial.derivative_of_natDegree_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p.natDegree = 0)
:
derivative p = 0
@[simp]
theorem
Polynomial.derivative_sum
{R : Type u}
{ι : Type y}
[Semiring R]
{s : Finset ι}
{f : ι → Polynomial R}
:
derivative (∑ b ∈ s, f b) = ∑ b ∈ s, derivative (f b)
theorem
Polynomial.iterate_derivative_sum
{R : Type u}
{ι : Type y}
[Semiring R]
(k : ℕ)
(s : Finset ι)
(f : ι → Polynomial R)
:
(⇑derivative)^[k] (∑ b ∈ s, f b) = ∑ b ∈ s, (⇑derivative)^[k] (f b)
theorem
Polynomial.derivative_smul
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
:
@[simp]
theorem
Polynomial.iterate_derivative_smul
{R : Type u}
[Semiring R]
{S : Type u_1}
[Monoid S]
[DistribMulAction S R]
[IsScalarTower S R R]
(s : S)
(p : Polynomial R)
(k : ℕ)
:
(⇑derivative)^[k] (s • p) = s • (⇑derivative)^[k] p
@[simp]
theorem
Polynomial.iterate_derivative_C_mul
{R : Type u}
[Semiring R]
(a : R)
(p : Polynomial R)
(k : ℕ)
:
(⇑derivative)^[k] (C a * p) = C a * (⇑derivative)^[k] p
theorem
Polynomial.of_mem_support_derivative
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(h : n ∈ (derivative p).support)
:
theorem
Polynomial.degree_derivative_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p ≠ 0)
:
(derivative p).degree < p.degree
theorem
Polynomial.degree_derivative_le
{R : Type u}
[Semiring R]
{p : Polynomial R}
:
(derivative p).degree ≤ p.degree
theorem
Polynomial.natDegree_derivative_lt
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p.natDegree ≠ 0)
:
(derivative p).natDegree < p.natDegree
theorem
Polynomial.natDegree_iterate_derivative
{R : Type u}
[Semiring R]
(p : Polynomial R)
(k : ℕ)
:
((⇑derivative)^[k] p).natDegree ≤ p.natDegree - k
@[deprecated Polynomial.derivative_natCast (since := "2024-04-17")]
Alias of Polynomial.derivative_natCast
.
@[simp]
theorem
Polynomial.derivative_ofNat
{R : Type u}
[Semiring R]
(n : ℕ)
[n.AtLeastTwo]
:
derivative (OfNat.ofNat n) = 0
theorem
Polynomial.iterate_derivative_eq_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
{x : ℕ}
(hx : p.natDegree < x)
:
(⇑derivative)^[x] p = 0
@[simp]
theorem
Polynomial.iterate_derivative_C
{R : Type u}
{a : R}
[Semiring R]
{k : ℕ}
(h : 0 < k)
:
(⇑derivative)^[k] (C a) = 0
@[simp]
theorem
Polynomial.iterate_derivative_one
{R : Type u}
[Semiring R]
{k : ℕ}
(h : 0 < k)
:
(⇑derivative)^[k] 1 = 0
theorem
Polynomial.natDegree_eq_zero_of_derivative_eq_zero
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
{f : Polynomial R}
(h : derivative f = 0)
:
f.natDegree = 0
theorem
Polynomial.eq_C_of_derivative_eq_zero
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
{f : Polynomial R}
(h : derivative f = 0)
:
f = C (f.coeff 0)
@[simp]
@[simp]
theorem
Polynomial.iterate_derivative_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
(k : ℕ)
:
(⇑derivative)^[k] (map f p) = map f ((⇑derivative)^[k] p)
@[deprecated Polynomial.derivative_natCast_mul (since := "2024-04-17")]
Alias of Polynomial.derivative_natCast_mul
.
@[simp]
theorem
Polynomial.iterate_derivative_natCast_mul
{R : Type u}
[Semiring R]
{n k : ℕ}
{f : Polynomial R}
:
(⇑derivative)^[k] (↑n * f) = ↑n * (⇑derivative)^[k] f
@[deprecated Polynomial.iterate_derivative_natCast_mul (since := "2024-04-17")]
theorem
Polynomial.iterate_derivative_nat_cast_mul
{R : Type u}
[Semiring R]
{n k : ℕ}
{f : Polynomial R}
:
(⇑derivative)^[k] (↑n * f) = ↑n * (⇑derivative)^[k] f
theorem
Polynomial.mem_support_derivative
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(n : ℕ)
:
@[simp]
theorem
Polynomial.degree_derivative_eq
{R : Type u}
[Semiring R]
[NoZeroSMulDivisors ℕ R]
(p : Polynomial R)
(hp : 0 < p.natDegree)
:
theorem
Polynomial.coeff_iterate_derivative
{R : Type u}
[Semiring R]
{k : ℕ}
(p : Polynomial R)
(m : ℕ)
:
theorem
Polynomial.iterate_derivative_eq_factorial_smul_sum
{R : Type u}
[Semiring R]
(p : Polynomial R)
(k : ℕ)
:
theorem
Polynomial.iterate_derivative_mul
{R : Type u}
[Semiring R]
{n : ℕ}
(p q : Polynomial R)
:
(⇑derivative)^[n] (p * q) = ∑ k ∈ Finset.range n.succ, n.choose k • ((⇑derivative)^[n - k] p * (⇑derivative)^[k] q)
noncomputable def
Polynomial.derivativeFinsupp
{R : Type u}
[Semiring R]
:
Polynomial R →ₗ[R] ℕ →₀ Polynomial R
Iterated derivatives as a finite support function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Polynomial.derivativeFinsupp_apply_toFun
{R : Type u}
[Semiring R]
(p : Polynomial R)
(x✝ : ℕ)
:
(derivativeFinsupp p) x✝ = (⇑derivative)^[x✝] p
@[simp]
theorem
Polynomial.support_derivativeFinsupp_subset_range
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(h : p.natDegree < n)
:
(derivativeFinsupp p).support ⊆ Finset.range n
@[simp]
theorem
Polynomial.derivativeFinsupp_C
{R : Type u}
[Semiring R]
(r : R)
:
derivativeFinsupp (C r) = Finsupp.single 0 (C r)
@[simp]
theorem
Polynomial.derivativeFinsupp_one
{R : Type u}
[Semiring R]
:
derivativeFinsupp 1 = Finsupp.single 0 1
@[simp]
theorem
Polynomial.derivativeFinsupp_X
{R : Type u}
[Semiring R]
:
derivativeFinsupp X = Finsupp.single 0 X + Finsupp.single 1 1
theorem
Polynomial.derivativeFinsupp_map
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
(f : R →+* S)
:
derivativeFinsupp (map f p) = Finsupp.mapRange (fun (x : Polynomial R) => map f x) ⋯ (derivativeFinsupp p)
theorem
Polynomial.derivativeFinsupp_derivative
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
derivativeFinsupp (derivative p) = Finsupp.comapDomain Nat.succ (derivativeFinsupp p) ⋯
theorem
Polynomial.pow_sub_one_dvd_derivative_of_pow_dvd
{R : Type u}
[CommSemiring R]
{p q : Polynomial R}
{n : ℕ}
(dvd : q ^ n ∣ p)
:
theorem
Polynomial.pow_sub_dvd_iterate_derivative_of_pow_dvd
{R : Type u}
[CommSemiring R]
{p q : Polynomial R}
{n : ℕ}
(m : ℕ)
(dvd : q ^ n ∣ p)
:
theorem
Polynomial.pow_sub_dvd_iterate_derivative_pow
{R : Type u}
[CommSemiring R]
(p : Polynomial R)
(n m : ℕ)
:
theorem
Polynomial.dvd_iterate_derivative_pow
{R : Type u}
[CommSemiring R]
(f : Polynomial R)
(n : ℕ)
{m : ℕ}
(c : R)
(hm : m ≠ 0)
:
theorem
Polynomial.iterate_derivative_X_pow_eq_natCast_mul
{R : Type u}
[CommSemiring R]
(n k : ℕ)
:
@[deprecated Polynomial.iterate_derivative_X_pow_eq_natCast_mul (since := "2024-04-17")]
theorem
Polynomial.iterate_derivative_X_pow_eq_nat_cast_mul
{R : Type u}
[CommSemiring R]
(n k : ℕ)
:
Alias of Polynomial.iterate_derivative_X_pow_eq_natCast_mul
.
Chain rule for formal derivative of polynomials.
theorem
Polynomial.derivative_prod
{R : Type u}
{ι : Type y}
[CommSemiring R]
[DecidableEq ι]
{s : Multiset ι}
{f : ι → Polynomial R}
:
derivative (Multiset.map f s).prod = (Multiset.map (fun (i : ι) => (Multiset.map f (s.erase i)).prod * derivative (f i)) s).sum
@[simp]
theorem
Polynomial.iterate_derivative_neg
{R : Type u}
[Ring R]
{f : Polynomial R}
{k : ℕ}
:
(⇑derivative)^[k] (-f) = -(⇑derivative)^[k] f
@[simp]
theorem
Polynomial.iterate_derivative_sub
{R : Type u}
[Ring R]
{k : ℕ}
{f g : Polynomial R}
:
(⇑derivative)^[k] (f - g) = (⇑derivative)^[k] f - (⇑derivative)^[k] g
@[deprecated Polynomial.derivative_intCast (since := "2024-04-17")]
Alias of Polynomial.derivative_intCast
.
@[deprecated Polynomial.derivative_intCast_mul (since := "2024-04-17")]
Alias of Polynomial.derivative_intCast_mul
.
@[simp]
theorem
Polynomial.iterate_derivative_intCast_mul
{R : Type u}
[Ring R]
{n : ℤ}
{k : ℕ}
{f : Polynomial R}
:
(⇑derivative)^[k] (↑n * f) = ↑n * (⇑derivative)^[k] f
@[deprecated Polynomial.iterate_derivative_intCast_mul (since := "2024-04-17")]
theorem
Polynomial.iterate_derivative_int_cast_mul
{R : Type u}
[Ring R]
{n : ℤ}
{k : ℕ}
{f : Polynomial R}
:
(⇑derivative)^[k] (↑n * f) = ↑n * (⇑derivative)^[k] f
@[simp]
theorem
Polynomial.iterate_derivative_comp_one_sub_X
{R : Type u}
[CommRing R]
(p : Polynomial R)
(k : ℕ)
:
theorem
Polynomial.eval_multiset_prod_X_sub_C_derivative
{R : Type u}
[CommRing R]
[DecidableEq R]
{S : Multiset R}
{r : R}
(hr : r ∈ S)
:
eval r (derivative (Multiset.map (fun (a : R) => X - C a) S).prod) = (Multiset.map (fun (a : R) => r - a) (S.erase r)).prod
@[simp]
theorem
Polynomial.dvd_derivative_iff
{R : Type u}
[Semiring R]
[NoZeroDivisors R]
{P : Polynomial R}
:
theorem
Polynomial.derivative_pow_eq_zero
{R : Type u}
[CommSemiring R]
[NoZeroDivisors R]
{n : ℕ}
(chn : ↑n ≠ 0)
{a : Polynomial R}
: