Evaluation of polynomials #
This file contains results on the interaction of Polynomial.eval
and Polynomial.coeff
@[simp]
theorem
Polynomial.zero_isRoot_of_coeff_zero_eq_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(hp : p.coeff 0 = 0)
:
p.IsRoot 0
@[simp]
The polynomial ring over a finite product of rings is isomorphic to the product of polynomial rings over individual rings.
Equations
- Polynomial.piEquiv R = RingEquiv.ofBijective (Pi.ringHom fun (i : ι) => Polynomial.mapRingHom (Pi.evalRingHom R i)) ⋯
Instances For
theorem
Polynomial.map_injective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(f : R →+* S)
(hf : Function.Injective ⇑f)
:
theorem
Polynomial.map_surjective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(f : R →+* S)
(hf : Function.Surjective ⇑f)
:
theorem
Polynomial.map_eq_zero_iff
{R : Type u}
{S : Type v}
[Semiring R]
{p : Polynomial R}
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
:
theorem
Polynomial.map_ne_zero_iff
{R : Type u}
{S : Type v}
[Semiring R]
{p : Polynomial R}
[Semiring S]
{f : R →+* S}
(hf : Function.Injective ⇑f)
:
@[simp]
theorem
Polynomial.support_map_of_injective
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(p : Polynomial R)
{f : R →+* S}
(hf : Function.Injective ⇑f)
:
theorem
Polynomial.IsRoot.map
{R : Type u}
{S : Type v}
[CommSemiring R]
[CommSemiring S]
{f : R →+* S}
{x : R}
{p : Polynomial R}
(h : p.IsRoot x)
:
(Polynomial.map f p).IsRoot (f x)
theorem
Polynomial.IsRoot.of_map
{S : Type v}
[CommSemiring S]
{R : Type u_1}
[CommRing R]
{f : R →+* S}
{x : R}
{p : Polynomial R}
(h : (Polynomial.map f p).IsRoot (f x))
(hf : Function.Injective ⇑f)
:
p.IsRoot x
theorem
Polynomial.isRoot_map_iff
{S : Type v}
[CommSemiring S]
{R : Type u_1}
[CommRing R]
{f : R →+* S}
{x : R}
{p : Polynomial R}
(hf : Function.Injective ⇑f)
: