Documentation

Mathlib.CategoryTheory.Sites.CoverPreserving

Cover-preserving functors between sites. #

In order to show that a functor is continuous, we define cover-preserving functors between sites as functors that push covering sieves to covering sieves. Then, a cover-preserving and compatible-preserving functor is continuous.

Main definitions #

Main results #

References #

A functor G : (C, J) ⥤ (D, K) between sites is cover-preserving if for all covering sieves R in C, R.functorPushforward G is a covering sieve in D.

Instances For

    A functor G : (C, J) ⥤ (D, K) between sites is called compatible preserving if for each compatible family of elements at C and valued in G.op ⋙ ℱ, and each commuting diagram f₁ ≫ G.map g₁ = f₂ ≫ G.map g₂, x g₁ and x g₂ coincide when restricted via fᵢ. This is actually stronger than merely preserving compatible families because of the definition of functorPushforward used.

    Instances For
      theorem CategoryTheory.compatiblePreservingOfDownwardsClosed {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (K : CategoryTheory.GrothendieckTopology D) (F : CategoryTheory.Functor C D) [F.Full] [F.Faithful] (hF : {c : C} → {d : D} → (d F.obj c)(c' : C) × (F.obj c' d)) :

      If F is cover-preserving and compatible-preserving, then F is a continuous functor.

      This result is basically https://stacks.math.columbia.edu/tag/00WW.