Documentation

Mathlib.GroupTheory.GroupAction.MultipleTransitivity

Multiple transitivity #

Remarks on implementation #

These results are results about actions on types n ↪ α induced by an action on α, and some results are developed in this context.

def Function.Injective.mulActionHom_embedding {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Type u_3} {β : Type u_4} [Group H] [MulAction H β] {σ : GH} {f : α →ₑ[σ] β} (ι : Type u_5) (hf : Injective f) :
(ι α) →ₑ[σ] ι β

An injective equivariant map α →ₑ[σ] β induces an equivariant map on embedding types (ι ↪ α) → (ι ↪ β).

Equations
Instances For
    def Function.Injective.addActionHom_embedding {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : Type u_3} {β : Type u_4} [AddGroup H] [AddAction H β] {σ : GH} {f : α →ₑ[σ] β} (ι : Type u_5) (hf : Injective f) :
    (ι α) →ₑ[σ] ι β

    An injective equivariant map α →ₑ[σ] β induces an equivariant map on embedding types (ι ↪ α) → (ι ↪ β).

    Equations
    Instances For
      @[simp]
      theorem Function.Injective.mulActionHom_embedding_apply {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Type u_3} {β : Type u_4} [Group H] [MulAction H β] {σ : GH} {f : α →ₑ[σ] β} {ι : Type u_5} (hf : Injective f) {x : ι α} {i : ι} :
      ((mulActionHom_embedding ι hf) x) i = f (x i)
      @[simp]
      theorem Function.Injective.addActionHom_embedding_apply {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : Type u_3} {β : Type u_4} [AddGroup H] [AddAction H β] {σ : GH} {f : α →ₑ[σ] β} {ι : Type u_5} (hf : Injective f) {x : ι α} {i : ι} :
      ((addActionHom_embedding ι hf) x) i = f (x i)
      theorem Function.Injective.mulActionHom_embedding_isInjective {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Type u_3} {β : Type u_4} [Group H] [MulAction H β] {σ : GH} {f : α →ₑ[σ] β} {ι : Type u_5} (hf : Injective f) :
      theorem Function.Injective.addActionHom_embedding_isInjective {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : Type u_3} {β : Type u_4} [AddGroup H] [AddAction H β] {σ : GH} {f : α →ₑ[σ] β} {ι : Type u_5} (hf : Injective f) :
      theorem Function.Bijective.mulActionHom_embedding_isBijective {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Type u_3} {β : Type u_4} [Group H] [MulAction H β] {σ : GH} {f : α →ₑ[σ] β} {ι : Type u_5} (hf : Bijective f) :
      theorem Function.Bijective.addActionHom_embedding_isBijective {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : Type u_3} {β : Type u_4} [AddGroup H] [AddAction H β] {σ : GH} {f : α →ₑ[σ] β} {ι : Type u_5} (hf : Bijective f) :
      @[reducible, inline]
      abbrev MulAction.IsMultiplyPretransitive (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] (n : ) :

      An action of a group on a type α is n-pretransitive if the associated action on Fin n ↪ α is pretransitive.

      Equations
      Instances For
        @[reducible, inline]
        abbrev AddAction.IsMultiplyPretransitive (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] (n : ) :

        An additive action of an additive group on a type α is n-pretransitive if the associated action on Fin n ↪ α is pretransitive.

        Equations
        Instances For
          theorem MulAction.IsPretransitive.of_embedding {G : Type u_3} {H : Type u_4} {α : Type u_5} {β : Type u_6} [Group G] [MulAction G α] [Group H] [MulAction H β] {σ : GH} {f : α →ₑ[σ] β} {n : Type u_7} (hf : Function.Surjective f) [IsPretransitive G (n α)] :
          theorem AddAction.IsPretransitive.of_embedding {G : Type u_3} {H : Type u_4} {α : Type u_5} {β : Type u_6} [AddGroup G] [AddAction G α] [AddGroup H] [AddAction H β] {σ : GH} {f : α →ₑ[σ] β} {n : Type u_7} (hf : Function.Surjective f) [IsPretransitive G (n α)] :
          theorem MulAction.IsPretransitive.of_embedding_congr {G : Type u_3} {H : Type u_4} {α : Type u_5} {β : Type u_6} [Group G] [MulAction G α] [Group H] [MulAction H β] {σ : GH} {f : α →ₑ[σ] β} {n : Type u_7} ( : Function.Surjective σ) (hf : Function.Bijective f) :
          theorem AddAction.IsPretransitive.of_embedding_congr {G : Type u_3} {H : Type u_4} {α : Type u_5} {β : Type u_6} [AddGroup G] [AddAction G α] [AddGroup H] [AddAction H β] {σ : GH} {f : α →ₑ[σ] β} {n : Type u_7} ( : Function.Surjective σ) (hf : Function.Bijective f) :
          theorem MulAction.is_zero_pretransitive {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {n : Type u_7} [IsEmpty n] :

          Any action is 0-pretransitive.

          theorem AddAction.is_zero_pretransitive {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {n : Type u_7} [IsEmpty n] :
          theorem MulAction.is_zero_pretransitive' {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] :

          Any action is 0-pretransitive.

          def MulActionHom.oneEmbeddingMap {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {one : Type u_7} [Unique one] :
          (one α) →ₑ[id] α

          For Unique one, the equivariant map from one ↪ α to α.

          Equations
          Instances For
            def AddActionHom.zeroEmbeddingMap {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {one : Type u_7} [Unique one] :
            (one α) →ₑ[id] α

            For Unique one, the equivariant map from one ↪ α to α

            Equations
            Instances For
              theorem MulAction.oneEmbedding_isPretransitive_iff {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {one : Type u_7} [Unique one] :

              An action is 1-pretransitive iff it is pretransitive.

              theorem AddAction.zeroEmbedding_isPretransitive_iff {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {one : Type u_7} [Unique one] :

              An additive action is 1-pretransitive iff it is pretransitive.

              An action is 1-pretransitive iff it is pretransitive.

              An additive action is 1-pretransitive iff it is pretransitive.

              theorem MulAction.is_two_pretransitive_iff {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] :
              IsMultiplyPretransitive G α 2 ∀ {a b c d : α}, a bc d∃ (g : G), g a = c g b = d

              An action is 2-pretransitive iff it can move any two distinct elements to any two distinct elements.

              theorem AddAction.is_two_pretransitive_iff {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] :
              IsMultiplyPretransitive G α 2 ∀ {a b c d : α}, a bc d∃ (g : G), g +ᵥ a = c g +ᵥ b = d

              An additive action is 2-pretransitive iff it can move any two distinct elements to any two distinct elements.

              A 2-pretransitive action is pretransitive.

              A 2-pretransitive additive action is pretransitive.

              A 2-transitive action is primitive.

              A 2-transitive additive action is primitive.

              def MulActionHom.embMap (G : Type u_3) (α : Type u_5) [Group G] [MulAction G α] {m : Type u_7} {n : Type u_8} (e : m n) :
              (n α) →ₑ[id] m α

              The natural equivariant map from n ↪ α to m ↪ α given by an embedding e : m ↪ n.

              Equations
              Instances For
                def AddActionHom.embMap (G : Type u_3) (α : Type u_5) [AddGroup G] [AddAction G α] {m : Type u_7} {n : Type u_8} (e : m n) :
                (n α) →ₑ[id] m α

                The natural equivariant map from n ↪ α to m ↪ α given by an embedding e : m ↪ n.

                Equations
                Instances For
                  theorem MulAction.isMultiplyPretransitive_of_le' {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {m n : } [IsMultiplyPretransitive G α n] (hmn : m n) ( : n ENat.card α) :

                  If α has at least n elements, then any n-pretransitive action on α is m-pretransitive for any m ≤ n.

                  This version allows α to be infinite and uses ENat.card. For Finite α, use MulAction.isMultiplyPretransitive_of_le

                  theorem AddAction.isMultiplyPretransitive_of_le' {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {m n : } [IsMultiplyPretransitive G α n] (hmn : m n) ( : n ENat.card α) :

                  If α has at least n elements, then any n-pretransitive action on α is n-pretransitive for any m ≤ n.

                  This version allows α to be infinite and uses ENat.card. For Finite α, use AddAction.isMultiplyPretransitive_of_le.

                  theorem MulAction.isMultiplyPretransitive_of_le {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {m n : } [IsMultiplyPretransitive G α n] (hmn : m n) ( : n Nat.card α) [Finite α] :

                  If α has at least n elements, then an n-pretransitive action is m-pretransitive for any m ≤ n.

                  For an infinite α, use MulAction.isMultiplyPretransitive_of_le'.

                  theorem AddAction.isMultiplyPretransitive_of_le {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {m n : } [IsMultiplyPretransitive G α n] (hmn : m n) ( : n Nat.card α) [Finite α] :

                  If α has at least n elements, then an n-pretransitive action is m-pretransitive for any m ≤ n.

                  For an infinite α, use MulAction.isMultiplyPretransitive_of_le'.

                  Multiple transitivity of a pretransitive action is equivalent to one less transitivity of stabilizer of a point Wielandt, th. 9.1, 1st part.

                  Multiple transitivity of a pretransitive action is equivalent to one less transitivity of stabilizer of a point Wielandt, th. 9.1, 1st part.