Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup

SubMulActions on complements of invariant subsets #

def SubMulAction.ofFixingSubgroup (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (s : Set α) :

The SubMulAction of fixingSubgroup M s on the complement of s.

Equations
Instances For
    def SubAddAction.ofFixingAddSubgroup (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (s : Set α) :

    The SubAddAction of fixingAddSubgroup M s on the complement of s.

    Equations
    Instances For
      @[simp]
      theorem SubMulAction.ofFixingSubgroup_carrier (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (s : Set α) :
      @[simp]
      theorem SubAddAction.ofFixingAddSubgroup_carrier (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (s : Set α) :
      theorem SubMulAction.mem_ofFixingSubgroup_iff (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] {s : Set α} {x : α} :
      x ofFixingSubgroup M s xs
      theorem SubAddAction.mem_ofFixingAddSubgroup_iff (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} {x : α} :
      theorem SubMulAction.not_mem_of_mem_ofFixingSubgroup {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {s : Set α} (x : (ofFixingSubgroup M s)) :
      xs
      theorem SubAddAction.not_mem_of_mem_ofFixingAddSubgroup {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {s : Set α} (x : (ofFixingAddSubgroup M s)) :
      xs

      The identity map of the SubMulAction of the fixingSubgroup into the ambient set, as an equivariant map.

      Equations
      Instances For

        The identity map of the SubAddAction of the fixingAddSubgroup into the ambient set, as an equivariant map.

        Equations
        Instances For
          theorem SubMulAction.mem_fixingSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {a : α} {s : Set α} {m : M} :
          theorem SubAddAction.mem_fixingAddSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {a : α} {s : Set α} {m : M} :
          theorem SubMulAction.fixingSubgroup_of_insert {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] (a : α) (s : Set (ofStabilizer M a)) :
          theorem SubAddAction.fixingAddSubgroup_of_insert {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] (a : α) (s : Set (ofStabilizer M a)) :
          theorem SubMulAction.mem_ofFixingSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} :
          x ofFixingSubgroup M (insert a ((fun (x : (ofStabilizer M a)) => x) '' s)) ∃ (hx : x ofStabilizer M a), x, hx ofFixingSubgroup (↥(MulAction.stabilizer M a)) s
          theorem SubAddAction.mem_ofFixingAddSubgroup_insert_iff {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} :
          x ofFixingAddSubgroup M (insert a ((fun (x : (ofStabilizer M a)) => x) '' s)) ∃ (hx : x ofStabilizer M a), x, hx ofFixingAddSubgroup (↥(AddAction.stabilizer M a)) s
          def SubMulAction.fixingSubgroupInsertEquiv (M : Type u_1) {α : Type u_2} [Group M] [MulAction M α] (a : α) (s : Set (ofStabilizer M a)) :

          The natural group isomorphism between fixing subgroups.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def SubAddAction.fixingAddSubgroupInsertEquiv (M : Type u_1) {α : Type u_2} [AddGroup M] [AddAction M α] (a : α) (s : Set (ofStabilizer M a)) :

            The natural additive group isomorphism between fixing additive subgroups.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The identity map of fixing subgroup of stabilizer into the fixing subgroup of the extended set, as an equivariant map.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The identity map of fixing additive subgroup of stabilizer into the fixing additive subgroup of the extended set, as an equivariant map.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem SubMulAction.ofFixingSubgroup_insert_map_apply {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} (hx : x ofFixingSubgroup M (insert a (Subtype.val '' s))) :
                  ((ofFixingSubgroup_insert_map M a s) x, hx) = x
                  @[simp]
                  theorem SubAddAction.ofFixingAddSubgroup_insert_map_apply {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {a : α} {s : Set (ofStabilizer M a)} {x : α} (hx : x ofFixingAddSubgroup M (insert a (Subtype.val '' s))) :
                  ((ofFixingAddSubgroup_insert_map M a s) x, hx) = x
                  theorem Set.conj_mem_fixingSubgroup (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) {k : M} (hk : k fixingSubgroup M t) :
                  theorem Set.conj_mem_fixingAddSubgroup (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) {k : M} (hk : k fixingAddSubgroup M t) :
                  theorem SubMulAction.fixingSubgroup_map_conj_eq (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) :

                  The fixingSubgroup of g • s is the conjugate of the fixingSubgroup of s by g.

                  def SubMulAction.fixingSubgroupEquivFixingSubgroup (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) :

                  The equivalence of fixingSubgroup M t with fixingSubgroup M s when s is a translate of t.

                  Equations
                  Instances For
                    def SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) :

                    The equivalence of fixingSubgroup M t with fixingSubgroup M s when s is a translate of t.

                    Equations
                    Instances For
                      @[simp]
                      theorem SubMulAction.fixingSubgroupEquivFixingSubgroup_coe_apply (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) (x : (fixingSubgroup M t)) :
                      @[simp]
                      theorem SubAddAction.fixingAddSubgroupEquivFixingAddSubgroup_coe_apply (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) (x : (fixingAddSubgroup M t)) :
                      def SubMulAction.conjMap_ofFixingSubgroup (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} (hg : g t = s) :

                      Conjugation induces an equivariant map between the SubMulAction of the fixing subgroup of a subset and that of a translate.

                      Equations
                      Instances For
                        def SubAddAction.conjMap_ofFixingAddSubgroup (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hg : g +ᵥ t = s) :

                        Conjugation induces an equivariant map between the SubAddAction of the fixing subgroup of a subset and that of a translate.

                        Equations
                        Instances For
                          @[simp]
                          theorem SubMulAction.conjMap_ofFixingSubgroup_coe_apply (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} {hg : g t = s} (x : (ofFixingSubgroup M t)) :
                          ((conjMap_ofFixingSubgroup M α hg) x) = g x
                          @[simp]
                          theorem SubAddAction.conjMap_ofFixingAddSubgroup_coe_apply (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} {g : M} {hg : g +ᵥ t = s} (x : (ofFixingAddSubgroup M t)) :
                          ((conjMap_ofFixingAddSubgroup M α hg) x) = g +ᵥ x
                          theorem SubMulAction.conjMap_ofFixingSubgroup_bijective (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} {g : M} (hst : g s = t) :
                          theorem SubAddAction.conjMap_ofFixingAddSubgroup_bijective (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} {g : M} (hst : g +ᵥ s = t) :
                          def SubMulAction.map_ofFixingSubgroupUnion (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] (s t : Set α) :
                          let ψ := fun (m : (fixingSubgroup M (s t))) => m, , ; (ofFixingSubgroup M (s t)) →ₑ[ψ] (ofFixingSubgroup (↥(fixingSubgroup M s)) (Subtype.val ⁻¹' t))

                          The identity between the iterated SubMulAction of the fixingSubgroup and the SubMulAction of the fixingSubgroup of the union, as an equivariant map.

                          Equations
                          Instances For
                            def SubAddAction.map_ofFixingAddSubgroupUnion (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] (s t : Set α) :
                            let ψ := fun (m : (fixingAddSubgroup M (s t))) => m, , ; (ofFixingAddSubgroup M (s t)) →ₑ[ψ] (ofFixingAddSubgroup (↥(fixingAddSubgroup M s)) (Subtype.val ⁻¹' t))

                            The identity between the iterated SubAddAction of the fixingAddSubgroup and the SubAddAction of the fixingAddSubgroup of the union, as an equivariant map.

                            Equations
                            Instances For
                              theorem SubMulAction.map_ofFixingSubgroupUnion_def (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] (s t : Set α) (x : (ofFixingSubgroup M (s t))) :
                              ((map_ofFixingSubgroupUnion M α s t) x) = x
                              theorem SubAddAction.map_ofFixingAddSubgroupUnion_def (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] (s t : Set α) (x : (ofFixingAddSubgroup M (s t))) :
                              ((map_ofFixingAddSubgroupUnion M α s t) x) = x
                              def SubMulAction.ofFixingSubgroup_of_inclusion (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} (hst : t s) :

                              The equivariant map on SubMulAction.ofFixingSubgroup given a set inclusion.

                              Equations
                              Instances For
                                def SubAddAction.ofFixingAddSubgroup_of_inclusion (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} (hst : t s) :

                                The equivariant map on SubAddAction.ofFixingAddSubgroup given a set inclusion.

                                Equations
                                Instances For
                                  def SubMulAction.ofFixingSubgroup_of_singleton (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] (a : α) :
                                  let φ := fun (x : (fixingSubgroup M {a})) => match x with | m, hm => m, ; (ofFixingSubgroup M {a}) →ₑ[φ] (ofStabilizer M a)

                                  The equivariant map between SubMulAction.ofStabilizer M a and ofFixingSubgroup M {a}.

                                  Equations
                                  Instances For
                                    def SubAddAction.ofFixingAddSubgroup_of_singleton (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] (a : α) :
                                    let φ := fun (x : (fixingAddSubgroup M {a})) => match x with | m, hm => m, ; (ofFixingAddSubgroup M {a}) →ₑ[φ] (ofStabilizer M a)

                                    The equivariant map between SubAddAction.ofStabilizer M a and ofFixingAddSubgroup M {a}.

                                    Equations
                                    Instances For
                                      def SubMulAction.ofFixingSubgroup_of_eq (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} (hst : s = t) :

                                      The identity between the SubMulActions of fixingSubgroups of equal sets, as an equivariant map.

                                      Equations
                                      Instances For
                                        def SubAddAction.ofFixingAddSubgroup_of_eq (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} (hst : s = t) :

                                        The identity between the SubAddActions of fixingAddSubgroups of equal sets, as an equivariant map.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem SubMulAction.ofFixingSubgroup_of_eq_apply (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} (hst : s = t) (x : (ofFixingSubgroup M s)) :
                                          ((ofFixingSubgroup_of_eq M α hst) x) = x
                                          @[simp]
                                          theorem SubAddAction.ofFixingAddSubgroup_of_eq_apply (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} (hst : s = t) (x : (ofFixingAddSubgroup M s)) :
                                          ((ofFixingAddSubgroup_of_eq M α hst) x) = x
                                          theorem SubMulAction.ofFixingSubgroup_of_eq_bijective (M : Type u_1) (α : Type u_2) [Group M] [MulAction M α] {s t : Set α} (hst : s = t) :
                                          theorem SubAddAction.ofFixingAddSubgroup_of_eq_bijective (M : Type u_1) (α : Type u_2) [AddGroup M] [AddAction M α] {s t : Set α} (hst : s = t) :
                                          noncomputable def SubMulAction.ofFixingSubgroup.append {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {n : } {s : Set α} [Finite s] (x : Fin n (ofFixingSubgroup M s)) :
                                          Fin (s.ncard + n) α

                                          Append Fin m ↪ ofFixingSubgroup M s at the end of an enumeration of s.

                                          Equations
                                          Instances For
                                            noncomputable def SubAddAction.ofFixingAddSubgroup.append {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {n : } {s : Set α} [Finite s] (x : Fin n (ofFixingAddSubgroup M s)) :
                                            Fin (s.ncard + n) α

                                            Append Fin m ↪ ofFixingSubgroup M s at the end of an enumeration of s.

                                            Equations
                                            Instances For
                                              theorem SubMulAction.ofFixingSubgroup.append_left {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {n : } {s : Set α} [Finite s] (x : Fin n (ofFixingSubgroup M s)) (i : Fin s.ncard) :
                                              let Hs := ; (append x) (Fin.castAdd n i) = ((Classical.choice Hs) i)
                                              theorem SubAddAction.ofFixingAddSubgroup.append_left {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {n : } {s : Set α} [Finite s] (x : Fin n (ofFixingAddSubgroup M s)) (i : Fin s.ncard) :
                                              let Hs := ; (append x) (Fin.castAdd n i) = ((Classical.choice Hs) i)
                                              theorem SubMulAction.ofFixingSubgroup.append_right {M : Type u_1} {α : Type u_2} [Group M] [MulAction M α] {n : } {s : Set α} [Finite s] (x : Fin n (ofFixingSubgroup M s)) (i : Fin n) :
                                              (append x) (Fin.natAdd s.ncard i) = (x i)
                                              theorem SubAddAction.ofFixingAddSubgroup.append_right {M : Type u_1} {α : Type u_2} [AddGroup M] [AddAction M α] {n : } {s : Set α} [Finite s] (x : Fin n (ofFixingAddSubgroup M s)) (i : Fin n) :
                                              (append x) (Fin.natAdd s.ncard i) = (x i)