Documentation

Mathlib.Algebra.Group.Subgroup.Map

map and comap for subgroups #

We prove results about images and preimages of subgroups under group homomorphisms. The bundled subgroups use bundled monoid homomorphisms.

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

def Subgroup.comap {G : Type u_1} [Group G] {N : Type u_7} [Group N] (f : G →* N) (H : Subgroup N) :

The preimage of a subgroup along a monoid homomorphism is a subgroup.

Equations
Instances For
    def AddSubgroup.comap {G : Type u_1} [AddGroup G] {N : Type u_7} [AddGroup N] (f : G →+ N) (H : AddSubgroup N) :

    The preimage of an AddSubgroup along an AddMonoid homomorphism is an AddSubgroup.

    Equations
    Instances For
      @[simp]
      theorem Subgroup.coe_comap {G : Type u_1} [Group G] {N : Type u_5} [Group N] (K : Subgroup N) (f : G →* N) :
      (comap f K) = f ⁻¹' K
      @[simp]
      theorem AddSubgroup.coe_comap {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (K : AddSubgroup N) (f : G →+ N) :
      (comap f K) = f ⁻¹' K
      @[simp]
      theorem Subgroup.mem_comap {G : Type u_1} [Group G] {N : Type u_5} [Group N] {K : Subgroup N} {f : G →* N} {x : G} :
      x comap f K f x K
      @[simp]
      theorem AddSubgroup.mem_comap {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {K : AddSubgroup N} {f : G →+ N} {x : G} :
      x comap f K f x K
      theorem Subgroup.comap_mono {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K K' : Subgroup N} :
      K K'comap f K comap f K'
      theorem AddSubgroup.comap_mono {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {K K' : AddSubgroup N} :
      K K'comap f K comap f K'
      theorem Subgroup.comap_comap {G : Type u_1} [Group G] {N : Type u_5} [Group N] {P : Type u_6} [Group P] (K : Subgroup P) (g : N →* P) (f : G →* N) :
      comap f (comap g K) = comap (g.comp f) K
      theorem AddSubgroup.comap_comap {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (K : AddSubgroup P) (g : N →+ P) (f : G →+ N) :
      comap f (comap g K) = comap (g.comp f) K
      @[simp]
      theorem Subgroup.comap_id {N : Type u_5} [Group N] (K : Subgroup N) :
      @[simp]
      theorem AddSubgroup.comap_id {N : Type u_5} [AddGroup N] (K : AddSubgroup N) :
      @[simp]
      theorem Subgroup.toAddSubgroup_comap {G : Type u_1} [Group G] {G₂ : Type u_7} [Group G₂] (f : G →* G₂) (s : Subgroup G₂) :
      AddSubgroup.comap (MonoidHom.toAdditive f) (toAddSubgroup s) = toAddSubgroup (comap f s)
      @[simp]
      theorem AddSubgroup.toSubgroup_comap {A : Type u_7} {A₂ : Type u_8} [AddGroup A] [AddGroup A₂] (f : A →+ A₂) (s : AddSubgroup A₂) :
      Subgroup.comap (AddMonoidHom.toMultiplicative f) (toSubgroup s) = toSubgroup (comap f s)
      def Subgroup.map {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup G) :

      The image of a subgroup along a monoid homomorphism is a subgroup.

      Equations
      • Subgroup.map f H = { carrier := f '' H, mul_mem' := , one_mem' := , inv_mem' := }
      Instances For
        def AddSubgroup.map {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup G) :

        The image of an AddSubgroup along an AddMonoid homomorphism is an AddSubgroup.

        Equations
        • AddSubgroup.map f H = { carrier := f '' H, add_mem' := , zero_mem' := , neg_mem' := }
        Instances For
          @[simp]
          theorem Subgroup.coe_map {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (K : Subgroup G) :
          (map f K) = f '' K
          @[simp]
          theorem AddSubgroup.coe_map {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (K : AddSubgroup G) :
          (map f K) = f '' K
          @[simp]
          theorem Subgroup.mem_map {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K : Subgroup G} {y : N} :
          y map f K xK, f x = y
          @[simp]
          theorem AddSubgroup.mem_map {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {K : AddSubgroup G} {y : N} :
          y map f K xK, f x = y
          theorem Subgroup.mem_map_of_mem {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) {K : Subgroup G} {x : G} (hx : x K) :
          f x map f K
          theorem AddSubgroup.mem_map_of_mem {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) {K : AddSubgroup G} {x : G} (hx : x K) :
          f x map f K
          theorem Subgroup.apply_coe_mem_map {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (K : Subgroup G) (x : K) :
          f x map f K
          theorem AddSubgroup.apply_coe_mem_map {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (K : AddSubgroup G) (x : K) :
          f x map f K
          theorem Subgroup.map_mono {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K K' : Subgroup G} :
          K K'map f K map f K'
          theorem AddSubgroup.map_mono {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {K K' : AddSubgroup G} :
          K K'map f K map f K'
          @[simp]
          theorem Subgroup.map_id {G : Type u_1} [Group G] (K : Subgroup G) :
          @[simp]
          theorem AddSubgroup.map_id {G : Type u_1} [AddGroup G] (K : AddSubgroup G) :
          theorem Subgroup.map_map {G : Type u_1} [Group G] (K : Subgroup G) {N : Type u_5} [Group N] {P : Type u_6} [Group P] (g : N →* P) (f : G →* N) :
          map g (map f K) = map (g.comp f) K
          theorem AddSubgroup.map_map {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {P : Type u_6} [AddGroup P] (g : N →+ P) (f : G →+ N) :
          map g (map f K) = map (g.comp f) K
          @[simp]
          theorem Subgroup.map_one_eq_bot {G : Type u_1} [Group G] (K : Subgroup G) {N : Type u_5} [Group N] :
          map 1 K =
          @[simp]
          theorem AddSubgroup.map_zero_eq_bot {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] :
          map 0 K =
          theorem Subgroup.mem_map_equiv {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G ≃* N} {K : Subgroup G} {x : N} :
          x map f.toMonoidHom K f.symm x K
          theorem AddSubgroup.mem_map_equiv {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G ≃+ N} {K : AddSubgroup G} {x : N} :
          x map f.toAddMonoidHom K f.symm x K
          @[simp]
          theorem Subgroup.mem_map_iff_mem {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} (hf : Function.Injective f) {K : Subgroup G} {x : G} :
          f x map f K x K
          @[simp]
          theorem AddSubgroup.mem_map_iff_mem {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} (hf : Function.Injective f) {K : AddSubgroup G} {x : G} :
          f x map f K x K
          theorem Subgroup.map_equiv_eq_comap_symm' {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G ≃* N) (K : Subgroup G) :
          map f.toMonoidHom K = comap f.symm.toMonoidHom K
          theorem AddSubgroup.map_equiv_eq_comap_symm' {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G ≃+ N) (K : AddSubgroup G) :
          map f.toAddMonoidHom K = comap f.symm.toAddMonoidHom K
          theorem Subgroup.map_equiv_eq_comap_symm {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G ≃* N) (K : Subgroup G) :
          map (↑f) K = comap (↑f.symm) K
          theorem AddSubgroup.map_equiv_eq_comap_symm {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G ≃+ N) (K : AddSubgroup G) :
          map (↑f) K = comap (↑f.symm) K
          theorem Subgroup.comap_equiv_eq_map_symm {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : N ≃* G) (K : Subgroup G) :
          comap (↑f) K = map (↑f.symm) K
          theorem AddSubgroup.comap_equiv_eq_map_symm {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : N ≃+ G) (K : AddSubgroup G) :
          comap (↑f) K = map (↑f.symm) K
          theorem Subgroup.comap_equiv_eq_map_symm' {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : N ≃* G) (K : Subgroup G) :
          comap f.toMonoidHom K = map f.symm.toMonoidHom K
          theorem AddSubgroup.comap_equiv_eq_map_symm' {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : N ≃+ G) (K : AddSubgroup G) :
          comap f.toAddMonoidHom K = map f.symm.toAddMonoidHom K
          theorem Subgroup.map_symm_eq_iff_map_eq {G : Type u_1} [Group G] (K : Subgroup G) {N : Type u_5} [Group N] {H : Subgroup N} {e : G ≃* N} :
          map (↑e.symm) H = K map (↑e) K = H
          theorem AddSubgroup.map_symm_eq_iff_map_eq {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {N : Type u_5} [AddGroup N] {H : AddSubgroup N} {e : G ≃+ N} :
          map (↑e.symm) H = K map (↑e) K = H
          theorem Subgroup.map_le_iff_le_comap {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {K : Subgroup G} {H : Subgroup N} :
          map f K H K comap f H
          theorem AddSubgroup.map_le_iff_le_comap {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {K : AddSubgroup G} {H : AddSubgroup N} :
          map f K H K comap f H
          theorem Subgroup.gc_map_comap {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
          theorem AddSubgroup.gc_map_comap {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
          theorem Subgroup.map_sup {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G →* N) :
          map f (H K) = map f H map f K
          theorem AddSubgroup.map_sup {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G →+ N) :
          map f (H K) = map f H map f K
          theorem Subgroup.map_iSup {G : Type u_1} [Group G] {N : Type u_5} [Group N] {ι : Sort u_7} (f : G →* N) (s : ιSubgroup G) :
          map f (iSup s) = ⨆ (i : ι), map f (s i)
          theorem AddSubgroup.map_iSup {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ι : Sort u_7} (f : G →+ N) (s : ιAddSubgroup G) :
          map f (iSup s) = ⨆ (i : ι), map f (s i)
          theorem Subgroup.map_inf {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G →* N) (hf : Function.Injective f) :
          map f (H K) = map f H map f K
          theorem AddSubgroup.map_inf {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G →+ N) (hf : Function.Injective f) :
          map f (H K) = map f H map f K
          theorem Subgroup.map_iInf {G : Type u_1} [Group G] {N : Type u_5} [Group N] {ι : Sort u_7} [Nonempty ι] (f : G →* N) (hf : Function.Injective f) (s : ιSubgroup G) :
          map f (iInf s) = ⨅ (i : ι), map f (s i)
          theorem AddSubgroup.map_iInf {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ι : Sort u_7} [Nonempty ι] (f : G →+ N) (hf : Function.Injective f) (s : ιAddSubgroup G) :
          map f (iInf s) = ⨅ (i : ι), map f (s i)
          theorem Subgroup.comap_sup_comap_le {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup N) (f : G →* N) :
          comap f H comap f K comap f (H K)
          theorem AddSubgroup.comap_sup_comap_le {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup N) (f : G →+ N) :
          comap f H comap f K comap f (H K)
          theorem Subgroup.iSup_comap_le {G : Type u_1} [Group G] {N : Type u_5} [Group N] {ι : Sort u_7} (f : G →* N) (s : ιSubgroup N) :
          ⨆ (i : ι), comap f (s i) comap f (iSup s)
          theorem AddSubgroup.iSup_comap_le {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ι : Sort u_7} (f : G →+ N) (s : ιAddSubgroup N) :
          ⨆ (i : ι), comap f (s i) comap f (iSup s)
          theorem Subgroup.comap_inf {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup N) (f : G →* N) :
          comap f (H K) = comap f H comap f K
          theorem AddSubgroup.comap_inf {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup N) (f : G →+ N) :
          comap f (H K) = comap f H comap f K
          theorem Subgroup.comap_iInf {G : Type u_1} [Group G] {N : Type u_5} [Group N] {ι : Sort u_7} (f : G →* N) (s : ιSubgroup N) :
          comap f (iInf s) = ⨅ (i : ι), comap f (s i)
          theorem AddSubgroup.comap_iInf {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {ι : Sort u_7} (f : G →+ N) (s : ιAddSubgroup N) :
          comap f (iInf s) = ⨅ (i : ι), comap f (s i)
          theorem Subgroup.map_inf_le {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G →* N) :
          map f (H K) map f H map f K
          theorem AddSubgroup.map_inf_le {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G →+ N) :
          map f (H K) map f H map f K
          theorem Subgroup.map_inf_eq {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G →* N) (hf : Function.Injective f) :
          map f (H K) = map f H map f K
          theorem AddSubgroup.map_inf_eq {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H K : AddSubgroup G) (f : G →+ N) (hf : Function.Injective f) :
          map f (H K) = map f H map f K
          @[simp]
          theorem Subgroup.map_bot {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
          @[simp]
          theorem AddSubgroup.map_bot {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
          @[simp]
          theorem Subgroup.map_top_of_surjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (h : Function.Surjective f) :
          @[simp]
          theorem AddSubgroup.map_top_of_surjective {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (h : Function.Surjective f) :
          @[simp]
          theorem Subgroup.comap_top {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) :
          @[simp]
          theorem AddSubgroup.comap_top {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) :
          def Subgroup.subgroupOf {G : Type u_1} [Group G] (H K : Subgroup G) :

          For any subgroups H and K, view H ⊓ K as a subgroup of K.

          Equations
          Instances For

            For any subgroups H and K, view H ⊓ K as a subgroup of K.

            Equations
            Instances For
              def Subgroup.subgroupOfEquivOfLe {G : Type u_7} [Group G] {H K : Subgroup G} (h : H K) :
              (H.subgroupOf K) ≃* H

              If H ≤ K, then H as a subgroup of K is isomorphic to H.

              Equations
              • Subgroup.subgroupOfEquivOfLe h = { toFun := fun (g : (H.subgroupOf K)) => g, , invFun := fun (g : H) => g, , , left_inv := , right_inv := , map_mul' := }
              Instances For
                def AddSubgroup.addSubgroupOfEquivOfLe {G : Type u_7} [AddGroup G] {H K : AddSubgroup G} (h : H K) :
                (H.addSubgroupOf K) ≃+ H

                If H ≤ K, then H as a subgroup of K is isomorphic to H.

                Equations
                • AddSubgroup.addSubgroupOfEquivOfLe h = { toFun := fun (g : (H.addSubgroupOf K)) => g, , invFun := fun (g : H) => g, , , left_inv := , right_inv := , map_add' := }
                Instances For
                  @[simp]
                  theorem AddSubgroup.addSubgroupOfEquivOfLe_apply_coe {G : Type u_7} [AddGroup G] {H K : AddSubgroup G} (h : H K) (g : (H.addSubgroupOf K)) :
                  ((addSubgroupOfEquivOfLe h) g) = g
                  @[simp]
                  theorem AddSubgroup.addSubgroupOfEquivOfLe_symm_apply_coe_coe {G : Type u_7} [AddGroup G] {H K : AddSubgroup G} (h : H K) (g : H) :
                  ((addSubgroupOfEquivOfLe h).symm g) = g
                  @[simp]
                  theorem Subgroup.subgroupOfEquivOfLe_symm_apply_coe_coe {G : Type u_7} [Group G] {H K : Subgroup G} (h : H K) (g : H) :
                  ((subgroupOfEquivOfLe h).symm g) = g
                  @[simp]
                  theorem Subgroup.subgroupOfEquivOfLe_apply_coe {G : Type u_7} [Group G] {H K : Subgroup G} (h : H K) (g : (H.subgroupOf K)) :
                  ((subgroupOfEquivOfLe h) g) = g
                  @[simp]
                  theorem Subgroup.comap_subtype {G : Type u_1} [Group G] (H K : Subgroup G) :
                  comap K.subtype H = H.subgroupOf K
                  @[simp]
                  theorem AddSubgroup.comap_subtype {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :
                  comap K.subtype H = H.addSubgroupOf K
                  @[simp]
                  theorem Subgroup.comap_inclusion_subgroupOf {G : Type u_1} [Group G] {K₁ K₂ : Subgroup G} (h : K₁ K₂) (H : Subgroup G) :
                  comap (inclusion h) (H.subgroupOf K₂) = H.subgroupOf K₁
                  @[simp]
                  theorem AddSubgroup.comap_inclusion_addSubgroupOf {G : Type u_1} [AddGroup G] {K₁ K₂ : AddSubgroup G} (h : K₁ K₂) (H : AddSubgroup G) :
                  comap (inclusion h) (H.addSubgroupOf K₂) = H.addSubgroupOf K₁
                  theorem Subgroup.coe_subgroupOf {G : Type u_1} [Group G] (H K : Subgroup G) :
                  (H.subgroupOf K) = K.subtype ⁻¹' H
                  theorem AddSubgroup.coe_addSubgroupOf {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :
                  (H.addSubgroupOf K) = K.subtype ⁻¹' H
                  theorem Subgroup.mem_subgroupOf {G : Type u_1} [Group G] {H K : Subgroup G} {h : K} :
                  h H.subgroupOf K h H
                  theorem AddSubgroup.mem_addSubgroupOf {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} {h : K} :
                  h H.addSubgroupOf K h H
                  @[simp]
                  theorem Subgroup.subgroupOf_map_subtype {G : Type u_1} [Group G] (H K : Subgroup G) :
                  map K.subtype (H.subgroupOf K) = H K
                  @[simp]
                  theorem AddSubgroup.addSubgroupOf_map_subtype {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :
                  map K.subtype (H.addSubgroupOf K) = H K
                  theorem Subgroup.map_subgroupOf_eq_of_le {G : Type u_1} [Group G] {H K : Subgroup G} (h : H K) :
                  map K.subtype (H.subgroupOf K) = H
                  theorem AddSubgroup.map_addSubgroupOf_eq_of_le {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H K) :
                  map K.subtype (H.addSubgroupOf K) = H
                  @[simp]
                  theorem Subgroup.bot_subgroupOf {G : Type u_1} [Group G] (H : Subgroup G) :
                  .subgroupOf H =
                  @[simp]
                  theorem AddSubgroup.bot_addSubgroupOf {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                  .addSubgroupOf H =
                  @[simp]
                  theorem Subgroup.top_subgroupOf {G : Type u_1} [Group G] (H : Subgroup G) :
                  .subgroupOf H =
                  @[simp]
                  theorem AddSubgroup.top_addSubgroupOf {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                  .addSubgroupOf H =
                  theorem Subgroup.subgroupOf_bot_eq_bot {G : Type u_1} [Group G] (H : Subgroup G) :
                  H.subgroupOf =
                  theorem AddSubgroup.addSubgroupOf_bot_eq_bot {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                  H.addSubgroupOf =
                  theorem Subgroup.subgroupOf_bot_eq_top {G : Type u_1} [Group G] (H : Subgroup G) :
                  H.subgroupOf =
                  theorem AddSubgroup.addSubgroupOf_bot_eq_top {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                  H.addSubgroupOf =
                  @[simp]
                  theorem Subgroup.subgroupOf_self {G : Type u_1} [Group G] (H : Subgroup G) :
                  H.subgroupOf H =
                  @[simp]
                  theorem AddSubgroup.addSubgroupOf_self {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                  H.addSubgroupOf H =
                  @[simp]
                  theorem Subgroup.subgroupOf_inj {G : Type u_1} [Group G] {H₁ H₂ K : Subgroup G} :
                  H₁.subgroupOf K = H₂.subgroupOf K H₁ K = H₂ K
                  @[simp]
                  theorem AddSubgroup.addSubgroupOf_inj {G : Type u_1} [AddGroup G] {H₁ H₂ K : AddSubgroup G} :
                  H₁.addSubgroupOf K = H₂.addSubgroupOf K H₁ K = H₂ K
                  @[simp]
                  theorem Subgroup.inf_subgroupOf_right {G : Type u_1} [Group G] (H K : Subgroup G) :
                  (H K).subgroupOf K = H.subgroupOf K
                  @[simp]
                  theorem AddSubgroup.inf_addSubgroupOf_right {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :
                  (H K).addSubgroupOf K = H.addSubgroupOf K
                  @[simp]
                  theorem Subgroup.inf_subgroupOf_left {G : Type u_1} [Group G] (H K : Subgroup G) :
                  (K H).subgroupOf K = H.subgroupOf K
                  @[simp]
                  theorem AddSubgroup.inf_addSubgroupOf_left {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :
                  (K H).addSubgroupOf K = H.addSubgroupOf K
                  @[simp]
                  theorem Subgroup.subgroupOf_eq_bot {G : Type u_1} [Group G] {H K : Subgroup G} :
                  H.subgroupOf K = Disjoint H K
                  @[simp]
                  theorem AddSubgroup.addSubgroupOf_eq_bot {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} :
                  H.addSubgroupOf K = Disjoint H K
                  @[simp]
                  theorem Subgroup.subgroupOf_eq_top {G : Type u_1} [Group G] {H K : Subgroup G} :
                  H.subgroupOf K = K H
                  @[simp]
                  theorem AddSubgroup.addSubgroupOf_eq_top {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} :
                  H.addSubgroupOf K = K H
                  instance Subgroup.map_isCommutative {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (f : G →* G') [H.IsCommutative] :
                  (map f H).IsCommutative
                  instance AddSubgroup.map_isCommutative {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (f : G →+ G') [H.IsCommutative] :
                  (map f H).IsCommutative
                  theorem Subgroup.comap_injective_isCommutative {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) {f : G' →* G} (hf : Function.Injective f) [H.IsCommutative] :
                  (comap f H).IsCommutative
                  theorem AddSubgroup.comap_injective_isCommutative {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) {f : G' →+ G} (hf : Function.Injective f) [H.IsCommutative] :
                  (comap f H).IsCommutative
                  instance Subgroup.subgroupOf_isCommutative {G : Type u_1} [Group G] (K H : Subgroup G) [H.IsCommutative] :
                  (H.subgroupOf K).IsCommutative
                  instance AddSubgroup.addSubgroupOf_isCommutative {G : Type u_1} [AddGroup G] (K H : AddSubgroup G) [H.IsCommutative] :
                  (H.addSubgroupOf K).IsCommutative
                  def MulEquiv.comapSubgroup {G : Type u_1} [Group G] {H : Type u_5} [Group H] (f : G ≃* H) :

                  An isomorphism of groups gives an order isomorphism between the lattices of subgroups, defined by sending subgroups to their inverse images.

                  See also MulEquiv.mapSubgroup which maps subgroups to their forward images.

                  Equations
                  Instances For
                    @[simp]
                    theorem MulEquiv.comapSubgroup_apply {G : Type u_1} [Group G] {H : Type u_5} [Group H] (f : G ≃* H) (H✝ : Subgroup H) :
                    f.comapSubgroup H✝ = Subgroup.comap (↑f) H✝
                    @[simp]
                    theorem MulEquiv.comapSubgroup_symm_apply {G : Type u_1} [Group G] {H : Type u_5} [Group H] (f : G ≃* H) (H✝ : Subgroup G) :
                    (RelIso.symm f.comapSubgroup) H✝ = Subgroup.comap (↑f.symm) H✝
                    def MulEquiv.mapSubgroup {G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G ≃* H) :

                    An isomorphism of groups gives an order isomorphism between the lattices of subgroups, defined by sending subgroups to their forward images.

                    See also MulEquiv.comapSubgroup which maps subgroups to their inverse images.

                    Equations
                    • f.mapSubgroup = { toFun := Subgroup.map f, invFun := Subgroup.map f.symm, left_inv := , right_inv := , map_rel_iff' := }
                    Instances For
                      @[simp]
                      theorem MulEquiv.mapSubgroup_apply {G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G ≃* H) (H✝ : Subgroup G) :
                      f.mapSubgroup H✝ = Subgroup.map (↑f) H✝
                      @[simp]
                      theorem MulEquiv.mapSubgroup_symm_apply {G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G ≃* H) (H✝ : Subgroup H) :
                      (RelIso.symm f.mapSubgroup) H✝ = Subgroup.map (↑f.symm) H✝
                      theorem Subgroup.map_comap_le {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup N) :
                      map f (comap f H) H
                      theorem AddSubgroup.map_comap_le {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup N) :
                      map f (comap f H) H
                      theorem Subgroup.le_comap_map {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (H : Subgroup G) :
                      H comap f (map f H)
                      theorem AddSubgroup.le_comap_map {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (H : AddSubgroup G) :
                      H comap f (map f H)
                      theorem Subgroup.map_eq_comap_of_inverse {G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G →* N} {g : N →* G} (hl : Function.LeftInverse g f) (hr : Function.RightInverse g f) (H : Subgroup G) :
                      map f H = comap g H
                      theorem AddSubgroup.map_eq_comap_of_inverse {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] {f : G →+ N} {g : N →+ G} (hl : Function.LeftInverse g f) (hr : Function.RightInverse g f) (H : AddSubgroup G) :
                      map f H = comap g H
                      noncomputable def Subgroup.equivMapOfInjective {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G →* N) (hf : Function.Injective f) :
                      H ≃* (map f H)

                      A subgroup is isomorphic to its image under an injective function. If you have an isomorphism, use MulEquiv.subgroupMap for better definitional equalities.

                      Equations
                      • H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (⇑f) (↑H) hf, map_mul' := }
                      Instances For
                        noncomputable def AddSubgroup.equivMapOfInjective {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G →+ N) (hf : Function.Injective f) :
                        H ≃+ (map f H)

                        An additive subgroup is isomorphic to its image under an injective function. If you have an isomorphism, use AddEquiv.addSubgroupMap for better definitional equalities.

                        Equations
                        • H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (⇑f) (↑H) hf, map_add' := }
                        Instances For
                          @[simp]
                          theorem Subgroup.coe_equivMapOfInjective_apply {G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G →* N) (hf : Function.Injective f) (h : H) :
                          ((H.equivMapOfInjective f hf) h) = f h
                          @[simp]
                          theorem AddSubgroup.coe_equivMapOfInjective_apply {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (H : AddSubgroup G) (f : G →+ N) (hf : Function.Injective f) (h : H) :
                          ((H.equivMapOfInjective f hf) h) = f h
                          def MonoidHom.subgroupComap {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') (H' : Subgroup G') :
                          (Subgroup.comap f H') →* H'

                          The MonoidHom from the preimage of a subgroup to itself.

                          Equations
                          • f.subgroupComap H' = f.submonoidComap H'.toSubmonoid
                          Instances For
                            def AddMonoidHom.addSubgroupComap {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (H' : AddSubgroup G') :
                            (AddSubgroup.comap f H') →+ H'

                            the AddMonoidHom from the preimage of an additive subgroup to itself.

                            Equations
                            • f.addSubgroupComap H' = f.addSubmonoidComap H'.toAddSubmonoid
                            Instances For
                              @[simp]
                              theorem MonoidHom.subgroupComap_apply_coe {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') (H' : Subgroup G') (x : (Submonoid.comap f H'.toSubmonoid)) :
                              ((f.subgroupComap H') x) = f x
                              @[simp]
                              theorem AddMonoidHom.addSubgroupComap_apply_coe {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (H' : AddSubgroup G') (x : (AddSubmonoid.comap f H'.toAddSubmonoid)) :
                              ((f.addSubgroupComap H') x) = f x
                              def MonoidHom.subgroupMap {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') (H : Subgroup G) :
                              H →* (Subgroup.map f H)

                              The MonoidHom from a subgroup to its image.

                              Equations
                              • f.subgroupMap H = f.submonoidMap H.toSubmonoid
                              Instances For
                                def AddMonoidHom.addSubgroupMap {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (H : AddSubgroup G) :
                                H →+ (AddSubgroup.map f H)

                                the AddMonoidHom from an additive subgroup to its image

                                Equations
                                • f.addSubgroupMap H = f.addSubmonoidMap H.toAddSubmonoid
                                Instances For
                                  @[simp]
                                  theorem MonoidHom.subgroupMap_apply_coe {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') (H : Subgroup G) (x : H.toSubmonoid) :
                                  ((f.subgroupMap H) x) = f x
                                  @[simp]
                                  theorem AddMonoidHom.addSubgroupMap_apply_coe {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (H : AddSubgroup G) (x : H.toAddSubmonoid) :
                                  ((f.addSubgroupMap H) x) = f x
                                  theorem MonoidHom.subgroupMap_surjective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G →* G') (H : Subgroup G) :
                                  Function.Surjective (f.subgroupMap H)
                                  theorem AddMonoidHom.addSubgroupMap_surjective {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (f : G →+ G') (H : AddSubgroup G) :
                                  Function.Surjective (f.addSubgroupMap H)
                                  def MulEquiv.subgroupCongr {G : Type u_1} [Group G] {H K : Subgroup G} (h : H = K) :
                                  H ≃* K

                                  Makes the identity isomorphism from a proof two subgroups of a multiplicative group are equal.

                                  Equations
                                  Instances For
                                    def AddEquiv.addSubgroupCongr {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H = K) :
                                    H ≃+ K

                                    Makes the identity additive isomorphism from a proof two subgroups of an additive group are equal.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem MulEquiv.subgroupCongr_apply {G : Type u_1} [Group G] {H K : Subgroup G} (h : H = K) (x : H) :
                                      ((subgroupCongr h) x) = x
                                      @[simp]
                                      theorem AddEquiv.addSubgroupCongr_apply {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H = K) (x : H) :
                                      ((addSubgroupCongr h) x) = x
                                      @[simp]
                                      theorem MulEquiv.subgroupCongr_symm_apply {G : Type u_1} [Group G] {H K : Subgroup G} (h : H = K) (x : K) :
                                      ((subgroupCongr h).symm x) = x
                                      @[simp]
                                      theorem AddEquiv.addSubgroupCongr_symm_apply {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H = K) (x : K) :
                                      ((addSubgroupCongr h).symm x) = x
                                      def MulEquiv.subgroupMap {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G ≃* G') (H : Subgroup G) :
                                      H ≃* (Subgroup.map (↑e) H)

                                      A subgroup is isomorphic to its image under an isomorphism. If you only have an injective map, use Subgroup.equiv_map_of_injective.

                                      Equations
                                      • e.subgroupMap H = e.submonoidMap H.toSubmonoid
                                      Instances For
                                        def AddEquiv.addSubgroupMap {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G ≃+ G') (H : AddSubgroup G) :
                                        H ≃+ (AddSubgroup.map (↑e) H)

                                        An additive subgroup is isomorphic to its image under an isomorphism. If you only have an injective map, use AddSubgroup.equiv_map_of_injective.

                                        Equations
                                        • e.addSubgroupMap H = e.addSubmonoidMap H.toAddSubmonoid
                                        Instances For
                                          @[simp]
                                          theorem MulEquiv.coe_subgroupMap_apply {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G ≃* G') (H : Subgroup G) (g : H) :
                                          ((e.subgroupMap H) g) = e g
                                          @[simp]
                                          theorem AddEquiv.coe_addSubgroupMap_apply {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G ≃+ G') (H : AddSubgroup G) (g : H) :
                                          ((e.addSubgroupMap H) g) = e g
                                          @[simp]
                                          theorem MulEquiv.subgroupMap_symm_apply {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G ≃* G') (H : Subgroup G) (g : (Subgroup.map (↑e) H)) :
                                          (e.subgroupMap H).symm g = e.symm g,
                                          @[simp]
                                          theorem AddEquiv.addSubgroupMap_symm_apply {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (e : G ≃+ G') (H : AddSubgroup G) (g : (AddSubgroup.map (↑e) H)) :
                                          (e.addSubgroupMap H).symm g = e.symm g,
                                          theorem MonoidHom.closure_preimage_le {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (s : Set N) :
                                          theorem MonoidHom.map_closure {G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G →* N) (s : Set G) :

                                          The image under a monoid homomorphism of the subgroup generated by a set equals the subgroup generated by the image of the set.

                                          theorem AddMonoidHom.map_closure {G : Type u_1} [AddGroup G] {N : Type u_5} [AddGroup N] (f : G →+ N) (s : Set G) :

                                          The image under an AddMonoid hom of the AddSubgroup generated by a set equals the AddSubgroup generated by the image of the set.

                                          @[simp]
                                          theorem Subgroup.equivMapOfInjective_coe_mulEquiv {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (e : G ≃* G') :
                                          H.equivMapOfInjective e = e.subgroupMap H
                                          @[simp]
                                          theorem AddSubgroup.equivMapOfInjective_coe_addEquiv {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddGroup G'] (H : AddSubgroup G) (e : G ≃+ G') :
                                          H.equivMapOfInjective e = e.addSubgroupMap H