Documentation

Mathlib.GroupTheory.GroupAction.SubMulAction.OfStabilizer

The SubMulAction of the stabilizer of a point on the complement of that point #

When a group G acts on a type α, the stabilizer of a point a : α acts naturally on the complement of that point.

Such actions (as the similar one for the fixator of a set acting on the complement of that set, defined in Mathlib.GroupTheory.GroupAction.SubMulAction.OfFixingSubgroup) are useful to study the multiple transitivity of the group G, since n-transitivity of G on α is equivalent to n - 1-transitivity of stabilizer G a on the complement of a.

We define equivariant maps that relate various of these sub_mul_actions and permit to manipulate them in a relatively smooth way.

Consider a b : α and g : G such that hg : g • b = a.

def SubMulAction.ofStabilizer (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) :

Action of the stabilizer of a point on the complement.

Equations
Instances For
    def SubAddAction.ofStabilizer (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) :

    Action of the stabilizer of a point on the complement.

    Equations
    Instances For
      theorem SubMulAction.ofStabilizer_carrier (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) :
      theorem SubAddAction.ofStabilizer_carrier (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) :
      theorem SubMulAction.mem_ofStabilizer_iff (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) {x : α} :
      theorem SubAddAction.mem_ofStabilizer_iff (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) {x : α} :
      theorem SubMulAction.neq_of_mem_ofStabilizer (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) {x : (ofStabilizer G a)} :
      x a
      theorem SubAddAction.neq_of_mem_ofStabilizer (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] (a : α) {x : (ofStabilizer G a)} :
      x a
      theorem SubMulAction.Enat_card_ofStabilizer_eq_add_one (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] (a : α) :
      theorem SubMulAction.nat_card_ofStabilizer_eq (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] [Finite α] (a : α) :
      theorem SubAddAction.nat_card_ofStabilizer_eq (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] [Finite α] (a : α) :
      def SubAddAction.ofStabilizer.conjMap {G : Type u_3} [AddGroup G] {α : Type u_4} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) :

      Conjugation induces an equivariant map between the SubAddAction of the stabilizer of a point and that of its translate.

      Equations
      Instances For
        def SubMulAction.ofStabilizer.conjMap {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) :

        Conjugation induces an equivariant map between the SubMulAction of the stabilizer of a point and that of its translate.

        Equations
        Instances For
          theorem SubMulAction.ofStabilizer.conjMap_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) (x : (ofStabilizer G a)) :
          ((conjMap hg) x) = g x
          theorem SubAddAction.ofStabilizer.conjMap_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) (x : (ofStabilizer G a)) :
          ((conjMap hg) x) = g +ᵥ x
          theorem AddAction.stabilizerEquivStabilizer_compTriple {G : Type u_3} [AddGroup G] {α : Type u_4} [AddAction G α] {g h k : G} {a b c : α} {hg : b = g +ᵥ a} {hh : c = h +ᵥ b} {hk : c = k +ᵥ a} (H : k = h + g) :
          theorem MulAction.stabilizerEquivStabilizer_compTriple {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g h k : G} {a b c : α} {hg : b = g a} {hh : c = h b} {hk : c = k a} (H : k = h * g) :
          theorem SubMulAction.ofStabilizer.conjMap_comp_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g h k : G} {a b c : α} {hg : b = g a} {hh : c = h b} {hk : c = k a} (H : k = h * g) (x : (ofStabilizer G a)) :
          (conjMap hh) ((conjMap hg) x) = (conjMap hk) x
          theorem SubAddAction.ofStabilizer.conjMap_comp_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g h k : G} {a b c : α} {hg : b = g +ᵥ a} {hh : c = h +ᵥ b} {hk : c = k +ᵥ a} (H : k = h + g) (x : (ofStabilizer G a)) :
          (conjMap hh) ((conjMap hg) x) = (conjMap hk) x
          theorem SubMulAction.ofStabilizer.conjMap_comp_inv_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) (x : (ofStabilizer G a)) :
          (conjMap ) ((conjMap hg) x) = x
          theorem SubAddAction.ofStabilizer.conjMap_comp_neg_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) (x : (ofStabilizer G a)) :
          (conjMap ) ((conjMap hg) x) = x
          theorem SubMulAction.ofStabilizer.inv_conjMap_comp_apply {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) (x : (ofStabilizer G b)) :
          (conjMap hg) ((conjMap ) x) = x
          theorem SubAddAction.ofStabilizer.neg_conjMap_comp_apply {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) (x : (ofStabilizer G b)) :
          (conjMap hg) ((conjMap ) x) = x
          theorem SubMulAction.ofStabilizer.conjMap_comp {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g h k : G} {a b c : α} (hg : b = g a) (hh : c = h b) (hk : c = k a) (H : k = h * g) :
          theorem SubAddAction.ofStabilizer.conjMap_comp {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g h k : G} {a b c : α} (hg : b = g +ᵥ a) (hh : c = h +ᵥ b) (hk : c = k +ᵥ a) (H : k = h + g) :
          theorem SubMulAction.ofStabilizer.conjMap_bijective {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {g : G} {a b : α} (hg : b = g a) :
          theorem SubAddAction.ofStabilizer.conjMap_bijective {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {g : G} {a b : α} (hg : b = g +ᵥ a) :
          def SubMulAction.ofStabilizer.snoc {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
          Fin n.succ α

          Append a to x : Fin n ↪ ofStabilizer G a to get an element of Fin n.succ ↪ α.

          Equations
          Instances For
            def SubAddAction.ofStabilizer.snoc {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
            Fin n.succ α

            Append a to x : Fin n ↪ ofStabilizer G a to get an element of Fin n.succ ↪ α.

            Equations
            Instances For
              theorem SubMulAction.ofStabilizer.snoc_castSucc {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) (i : Fin n) :
              (snoc x) i.castSucc = (x i)
              theorem SubAddAction.ofStabilizer.snoc_castSucc {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) (i : Fin n) :
              (snoc x) i.castSucc = (x i)
              theorem SubMulAction.ofStabilizer.snoc_last {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
              (snoc x) (Fin.last n) = a
              theorem SubAddAction.ofStabilizer.snoc_last {G : Type u_1} [AddGroup G] {α : Type u_2} [AddAction G α] {a : α} {n : } (x : Fin n (ofStabilizer G a)) :
              (snoc x) (Fin.last n) = a
              theorem SubMulAction.exists_smul_of_last_eq (G : Type u_1) [Group G] {α : Type u_2} [MulAction G α] [MulAction.IsPretransitive G α] {n : } (a : α) (x : Fin n.succ α) :
              ∃ (g : G) (y : Fin n (ofStabilizer G a)), g x = ofStabilizer.snoc y
              theorem SubAddAction.exists_vadd_of_last_eq (G : Type u_1) [AddGroup G] {α : Type u_2} [AddAction G α] [AddAction.IsPretransitive G α] {n : } (a : α) (x : Fin n.succ α) :
              ∃ (g : G) (y : Fin n (ofStabilizer G a)), g +ᵥ x = ofStabilizer.snoc y