Oka predicates #
This file introduces the notion of Oka predicates and standard results about them.
Main results #
Ideal.IsOka.isPrime_of_maximal_not
: if an ideal is maximal for not satisfying an Oka predicate, then it is prime.Ideal.IsOka.forall_of_forall_prime
: if all prime ideals of a ring satisfy an Oka predicate, then all its ideals also satisfy the predicate.
References #
theorem
Ideal.IsOka.forall_of_forall_prime
{R : Type u_1}
[CommSemiring R]
{P : Ideal R → Prop}
(hP : IsOka P)
(hmax : (∃ (I : Ideal R), ¬P I) → ∃ (I : Ideal R), Maximal (fun (x : Ideal R) => ¬P x) I)
(hprime : ∀ (I : Ideal R), I.IsPrime → P I)
(I : Ideal R)
:
P I
If all prime ideals of a ring satisfy an Oka predicate, then all its ideals also satisfy the
predicate. hmax
is generally obtained using Zorn's lemma.