Oka predicates #
This file introduces the notion of Oka predicates and standard results about them.
Main results #
Ideal.IsOka.isPrime_of_maximal_not: if an ideal is maximal for not satisfying an Oka predicate, then it is prime.Ideal.IsOka.forall_of_forall_prime: if all prime ideals of a ring satisfy an Oka predicate, then all its ideals also satisfy the predicate.
References #
theorem
Ideal.IsOka.forall_of_forall_prime
{R : Type u_1}
[CommSemiring R]
{P : Ideal R → Prop}
(hP : IsOka P)
(hmax : ∀ (I : Ideal R), ¬P I → ∃ (I : Ideal R), Maximal (fun (x : Ideal R) => ¬P x) I)
(hprime : ∀ (I : Ideal R), I.IsPrime → P I)
(I : Ideal R)
:
P I
If a ring R verify:
- All prime ideals of
Rsatisfy an Oka predicateP. - One ideal not satisfying
Pimplies that there is an ideal maximal for not satisfyingP.
Then all the ideals of R satisfy P.
theorem
Ideal.IsOka.forall_of_forall_prime'
{R : Type u_1}
[CommSemiring R]
{P : Ideal R → Prop}
(hP : IsOka P)
(hchain : ∀ C ⊆ {I : Ideal R | ¬P I}, IsChain (fun (x1 x2 : Ideal R) => x1 ≤ x2) C → ∀ x ∈ C, P (sSup C) → ∃ I ∈ C, P I)
(hprime : ∀ (I : Ideal R), I.IsPrime → P I)
(I : Ideal R)
:
P I
A variant of forall_of_forall_prime with a different spelling of the condition hmax.