Documentation

Mathlib.CategoryTheory.Elements

The category of elements #

This file defines the category of elements, also known as (a special case of) the Grothendieck construction.

Given a functor F : C ⥤ Type, an object of F.Elements is a pair (X : C, x : F.obj X). A morphism (X, x) ⟶ (Y, y) is a morphism f : X ⟶ Y in C, so F.map f takes x to y.

Implementation notes #

This construction is equivalent to a special case of a comma construction, so this is mostly just a more convenient API. We prove the equivalence in CategoryTheory.CategoryOfElements.structuredArrowEquivalence.

References #

Tags #

category of elements, Grothendieck construction, comma category

The type of objects for the category of elements of a functor F : C ⥤ Type is a pair (X : C, x : F.obj X).

Equations
Instances For

    The category structure on F.Elements, for F : C ⥤ Type. A morphism (X, x) ⟶ (Y, y) is a morphism f : X ⟶ Y in C, so F.map f takes x to y.

    Equations
    Equations
    • One or more equations did not get rendered due to their size.

    The functor out of the category of elements which forgets the element.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A natural transformation between functors induces a functor between the categories of elements.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The forward direction of the equivalence F.Elements ≅ (*, F).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The reverse direction of the equivalence F.Elements ≅ (*, F).

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.CategoryOfElements.structuredArrowEquivalence_unitIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor C (Type w)) :
            (CategoryTheory.CategoryOfElements.structuredArrowEquivalence F).unitIso.inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.leftUnitor (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F))).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.Functor.Elements F) => CategoryTheory.Iso.refl X) ).hom (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F) (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F))).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.fromStructuredArrow F) (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F)).inv) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.whiskerRight (CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.StructuredArrow PUnit.{w + 1} F) => CategoryTheory.StructuredArrow.isoMk (CategoryTheory.Iso.refl X.right) ) ).hom (CategoryTheory.CategoryOfElements.fromStructuredArrow F))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.Functor.leftUnitor (CategoryTheory.CategoryOfElements.fromStructuredArrow F)).hom) (CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.Functor.Elements F) => CategoryTheory.Iso.refl X) ).inv)))))
            @[simp]
            theorem CategoryTheory.CategoryOfElements.structuredArrowEquivalence_unitIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor C (Type w)) :
            (CategoryTheory.CategoryOfElements.structuredArrowEquivalence F).unitIso.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.Functor.Elements F) => CategoryTheory.Iso.refl X) ).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.Functor.leftUnitor (CategoryTheory.CategoryOfElements.fromStructuredArrow F)).inv) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.whiskerRight (CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.StructuredArrow PUnit.{w + 1} F) => CategoryTheory.StructuredArrow.isoMk (CategoryTheory.Iso.refl X.right) ) ).inv (CategoryTheory.CategoryOfElements.fromStructuredArrow F))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.fromStructuredArrow F) (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F)).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F) (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F))).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.Functor.Elements F) => CategoryTheory.Iso.refl X) ).inv (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F))) (CategoryTheory.Functor.leftUnitor (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toStructuredArrow F) (CategoryTheory.CategoryOfElements.fromStructuredArrow F))).hom)))))

            The equivalence between the category of elements F.Elements and the comma category (*, F).

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The forward direction of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F), given by CategoryTheory.yonedaSections.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The reverse direction of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F), given by CategoryTheory.yonedaEquiv.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v)) :
                  (CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence F).unitIso.inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.leftUnitor (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.NatTrans.op (CategoryTheory.eqToHom )) (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp).inv) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.whiskerRight (CategoryTheory.eqToHom ) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.Functor.leftUnitor (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp).hom) (CategoryTheory.NatTrans.op (CategoryTheory.eqToHom )))))))

                  The equivalence F.Elementsᵒᵖ ≅ (yoneda, F) given by yoneda lemma.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor Cᵒᵖ (Type v)) :
                    (CategoryTheory.CategoryOfElements.costructuredArrowYonedaEquivalence F).unitIso.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.NatTrans.op (CategoryTheory.eqToHom )) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.Functor.leftUnitor (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp).inv) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.whiskerRight (CategoryTheory.eqToHom ) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.associator (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.NatTrans.op (CategoryTheory.eqToHom )) (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)) (CategoryTheory.Functor.leftUnitor (CategoryTheory.Functor.comp (CategoryTheory.CategoryOfElements.toCostructuredArrow F) (CategoryTheory.CategoryOfElements.fromCostructuredArrow F).rightOp)).hom)))))

                    The equivalence F.elementsᵒᵖ ≌ (yoneda, F) is compatible with the forgetful functors.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      The equivalence F.elementsᵒᵖ ≌ (yoneda, F) is compatible with the forgetful functors.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For