Documentation

Mathlib.CategoryTheory.Elements

The category of elements #

This file defines the category of elements, also known as (a special case of) the Grothendieck construction.

Given a functor F : C ⥤ Type, an object of F.Elements is a pair (X : C, x : F.obj X). A morphism (X, x) ⟶ (Y, y) is a morphism f : X ⟶ Y in C, so F.map f takes x to y.

Implementation notes #

This construction is equivalent to a special case of a comma construction, so this is mostly just a more convenient API. We prove the equivalence in CategoryTheory.CategoryOfElements.structuredArrowEquivalence.

References #

Tags #

category of elements, Grothendieck construction, comma category

The type of objects for the category of elements of a functor F : C ⥤ Type is a pair (X : C, x : F.obj X).

Equations
  • F.Elements = ((c : C) × F.obj c)
Instances For
    @[reducible, inline]
    abbrev CategoryTheory.Functor.elementsMk {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) (X : C) (x : F.obj X) :
    F.Elements

    Constructor for the type F.Elements when F is a functor to types.

    Equations
    • F.elementsMk X x = X, x
    Instances For
      theorem CategoryTheory.Functor.Elements.ext {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (x y : F.Elements) (h₁ : x.fst = y.fst) (h₂ : F.map (eqToHom h₁) x.snd = y.snd) :
      x = y

      The category structure on F.Elements, for F : C ⥤ Type. A morphism (X, x) ⟶ (Y, y) is a morphism f : X ⟶ Y in C, so F.map f takes x to y.

      Equations
      def CategoryTheory.NatTrans.mapElements {C : Type u} [Category.{v, u} C] {F G : Functor C (Type w)} (φ : F G) :
      Functor F.Elements G.Elements

      Natural transformations are mapped to functors between category of elements

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.NatTrans.mapElements_obj {C : Type u} [Category.{v, u} C] {F G : Functor C (Type w)} (φ : F G) (x✝ : F.Elements) :
        (mapElements φ).obj x✝ = match x✝ with | X, x => X, φ.app X x
        @[simp]
        theorem CategoryTheory.NatTrans.mapElements_map_coe {C : Type u} [Category.{v, u} C] {F G : Functor C (Type w)} (φ : F G) {p q : F.Elements} (x✝ : p q) :
        ((mapElements φ).map x✝) = x✝

        The functor mapping functors C ⥤ Type w to their category of elements

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          def CategoryTheory.CategoryOfElements.homMk {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (x y : F.Elements) (f : x.fst y.fst) (hf : F.map f x.snd = y.snd) :
          x y

          Constructor for morphisms in the category of elements of a functor to types.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.CategoryOfElements.homMk_coe {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (x y : F.Elements) (f : x.fst y.fst) (hf : F.map f x.snd = y.snd) :
            (homMk x y f hf) = f
            theorem CategoryTheory.CategoryOfElements.ext {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) {x y : F.Elements} (f g : x y) (w : f = g) :
            f = g
            @[simp]
            theorem CategoryTheory.CategoryOfElements.comp_val {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {p q r : F.Elements} {f : p q} {g : q r} :
            @[simp]
            @[simp]
            theorem CategoryTheory.CategoryOfElements.map_snd {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} {p q : F.Elements} (f : p q) :
            F.map (↑f) p.snd = q.snd
            def CategoryTheory.CategoryOfElements.isoMk {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (x y : F.Elements) (e : x.fst y.fst) (he : F.map e.hom x.snd = y.snd) :
            x y

            Constructor for isomorphisms in the category of elements of a functor to types.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.CategoryOfElements.isoMk_hom {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (x y : F.Elements) (e : x.fst y.fst) (he : F.map e.hom x.snd = y.snd) :
              (isoMk x y e he).hom = homMk x y e.hom he
              @[simp]
              theorem CategoryTheory.CategoryOfElements.isoMk_inv {C : Type u} [Category.{v, u} C] {F : Functor C (Type w)} (x y : F.Elements) (e : x.fst y.fst) (he : F.map e.hom x.snd = y.snd) :
              (isoMk x y e he).inv = homMk y x e.inv
              instance CategoryTheory.groupoidOfElements {G : Type u} [Groupoid G] (F : Functor G (Type w)) :
              Groupoid F.Elements
              Equations

              The functor out of the category of elements which forgets the element.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.CategoryOfElements.π_map {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) {X✝ Y✝ : F.Elements} (f : X✝ Y✝) :
                (π F).map f = f
                @[simp]
                theorem CategoryTheory.CategoryOfElements.π_obj {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) (X : F.Elements) :
                (π F).obj X = X.fst
                def CategoryTheory.CategoryOfElements.map {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} (α : F₁ F₂) :
                Functor F₁.Elements F₂.Elements

                A natural transformation between functors induces a functor between the categories of elements.

                Equations
                • CategoryTheory.CategoryOfElements.map α = { obj := fun (t : F₁.Elements) => t.fst, α.app t.fst t.snd, map := fun {t₁ t₂ : F₁.Elements} (k : t₁ t₂) => k, , map_id := , map_comp := }
                Instances For
                  @[simp]
                  theorem CategoryTheory.CategoryOfElements.map_obj_snd {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} (α : F₁ F₂) (t : F₁.Elements) :
                  ((map α).obj t).snd = α.app t.fst t.snd
                  @[simp]
                  theorem CategoryTheory.CategoryOfElements.map_map_coe {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} (α : F₁ F₂) {t₁ t₂ : F₁.Elements} (k : t₁ t₂) :
                  ((map α).map k) = k
                  @[simp]
                  theorem CategoryTheory.CategoryOfElements.map_obj_fst {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} (α : F₁ F₂) (t : F₁.Elements) :
                  ((map α).obj t).fst = t.fst
                  @[simp]
                  theorem CategoryTheory.CategoryOfElements.map_π {C : Type u} [Category.{v, u} C] {F₁ F₂ : Functor C (Type w)} (α : F₁ F₂) :
                  (map α).comp (π F₂) = π F₁

                  The forward direction of the equivalence F.Elements ≅ (*, F).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem CategoryTheory.CategoryOfElements.toStructuredArrow_obj {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) (X : F.Elements) :
                    (toStructuredArrow F).obj X = { left := { as := PUnit.unit }, right := X.fst, hom := fun (x : (Functor.fromPUnit PUnit.{w + 1}).obj { as := PUnit.unit }) => X.snd }
                    @[simp]
                    theorem CategoryTheory.CategoryOfElements.to_comma_map_right {C : Type u} [Category.{v, u} C] (F : Functor C (Type w)) {X Y : F.Elements} (f : X Y) :
                    ((toStructuredArrow F).map f).right = f

                    The reverse direction of the equivalence F.Elements ≅ (*, F).

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]

                      The equivalence between the category of elements F.Elements and the comma category (*, F).

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        The forward direction of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F), given by CategoryTheory.yonedaEquiv.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem CategoryTheory.CategoryOfElements.toCostructuredArrow_map {C : Type u} [Category.{v, u} C] (F : Functor Cᵒᵖ (Type v)) {X✝ Y✝ : F.Elementsᵒᵖ} (f : X✝ Y✝) :
                          (toCostructuredArrow F).map f = CostructuredArrow.homMk (↑f.unop).unop

                          The reverse direction of the equivalence F.Elementsᵒᵖ ≅ (yoneda, F), given by CategoryTheory.yonedaEquiv.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            The equivalence F.Elementsᵒᵖ ≅ (yoneda, F) given by yoneda lemma.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              The equivalence (-.Elements)ᵒᵖ ≅ (yoneda, -) of is actually a natural isomorphism of functors.

                              The equivalence F.elementsᵒᵖ ≌ (yoneda, F) is compatible with the forgetful functors.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                The equivalence F.elementsᵒᵖ ≌ (yoneda, F) is compatible with the forgetful functors.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  def CategoryTheory.Functor.Elements.initial {C : Type u} [Category.{v, u} C] (A : C) :
                                  (yoneda.obj A).Elements

                                  The initial object in the category of elements for a representable functor. In isInitial it is shown that this is initial.

                                  Equations
                                  Instances For

                                    Show that Elements.initial A is initial in the category of elements for the yoneda functor.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For