Documentation

Mathlib.GroupTheory.GroupAction.Blocks

Blocks #

Given SMul G X, an action of a type G on a type X, we define

The non-existence of nontrivial blocks is the definition of primitive actions.

Results for actions on finite sets #

References #

We follow [Wie64].

theorem MulAction.orbit.pairwiseDisjoint {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] :
(Set.range fun (x : X) => MulAction.orbit G x).PairwiseDisjoint id
theorem AddAction.orbit.pairwiseDisjoint {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] :
(Set.range fun (x : X) => AddAction.orbit G x).PairwiseDisjoint id
theorem MulAction.IsPartition.of_orbits {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] :

Orbits of an element form a partition

def MulAction.IsFixedBlock (G : Type u_1) {X : Type u_2} [SMul G X] (B : Set X) :

A set B is a G-fixed block if g • B = B for all g : G.

Equations
Instances For
    def AddAction.IsFixedBlock (G : Type u_1) {X : Type u_2} [VAdd G X] (B : Set X) :

    A set B is a G-fixed block if g +ᵥ B = B for all g : G.

    Equations
    Instances For
      def MulAction.IsInvariantBlock (G : Type u_1) {X : Type u_2} [SMul G X] (B : Set X) :

      A set B is a G-invariant block if g • B ⊆ B for all g : G.

      Note: It is not necessarily a block when the action is not by a group.

      Equations
      Instances For
        def AddAction.IsInvariantBlock (G : Type u_1) {X : Type u_2} [VAdd G X] (B : Set X) :

        A set B is a G-invariant block if g +ᵥ B ⊆ B for all g : G.

        Note: It is not necessarily a block when the action is not by a group.

        Equations
        Instances For
          def MulAction.IsTrivialBlock {X : Type u_2} (B : Set X) :

          A trivial block is a Set X which is either a subsingleton or univ.

          Note: It is not necessarily a block when the action is not by a group.

          Equations
          Instances For
            def AddAction.IsTrivialBlock {X : Type u_2} (B : Set X) :

            A trivial block is a Set X which is either a subsingleton or univ.

            Note: It is not necessarily a block when the action is not by a group.

            Equations
            Instances For
              def MulAction.IsBlock (G : Type u_1) {X : Type u_2} [SMul G X] (B : Set X) :

              A set B is a G-block iff the sets of the form g • B are pairwise equal or disjoint.

              Equations
              Instances For
                def AddAction.IsBlock (G : Type u_1) {X : Type u_2} [VAdd G X] (B : Set X) :

                A set B is a G-block iff the sets of the form g +ᵥ B are pairwise equal or disjoint.

                Equations
                Instances For
                  theorem MulAction.isBlock_iff_smul_eq_smul_of_nonempty {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} :
                  MulAction.IsBlock G B ∀ ⦃g₁ g₂ : G⦄, (g₁ B g₂ B).Nonemptyg₁ B = g₂ B
                  theorem AddAction.isBlock_iff_vadd_eq_vadd_of_nonempty {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} :
                  AddAction.IsBlock G B ∀ ⦃g₁ g₂ : G⦄, ((g₁ +ᵥ B) (g₂ +ᵥ B)).Nonemptyg₁ +ᵥ B = g₂ +ᵥ B
                  theorem MulAction.isBlock_iff_pairwiseDisjoint_range_smul {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} :
                  MulAction.IsBlock G B (Set.range fun (g : G) => g B).PairwiseDisjoint id
                  theorem AddAction.isBlock_iff_pairwiseDisjoint_range_vadd {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} :
                  AddAction.IsBlock G B (Set.range fun (g : G) => g +ᵥ B).PairwiseDisjoint id
                  theorem MulAction.isBlock_iff_smul_eq_smul_or_disjoint {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} :
                  MulAction.IsBlock G B ∀ (g₁ g₂ : G), g₁ B = g₂ B Disjoint (g₁ B) (g₂ B)
                  theorem AddAction.isBlock_iff_vadd_eq_vadd_or_disjoint {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} :
                  AddAction.IsBlock G B ∀ (g₁ g₂ : G), g₁ +ᵥ B = g₂ +ᵥ B Disjoint (g₁ +ᵥ B) (g₂ +ᵥ B)
                  theorem MulAction.IsBlock.smul_eq_smul_of_subset {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} {g₁ g₂ : G} (hB : MulAction.IsBlock G B) (hg : g₁ B g₂ B) :
                  g₁ B = g₂ B
                  theorem AddAction.IsBlock.vadd_eq_vadd_of_subset {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} {g₁ g₂ : G} (hB : AddAction.IsBlock G B) (hg : g₁ +ᵥ B g₂ +ᵥ B) :
                  g₁ +ᵥ B = g₂ +ᵥ B
                  theorem MulAction.IsBlock.not_smul_set_ssubset_smul_set {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} {g₁ g₂ : G} (hB : MulAction.IsBlock G B) :
                  ¬g₁ B g₂ B
                  theorem AddAction.IsBlock.not_vadd_set_ssubset_vadd_set {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} {g₁ g₂ : G} (hB : AddAction.IsBlock G B) :
                  ¬g₁ +ᵥ B g₂ +ᵥ B
                  theorem MulAction.IsBlock.disjoint_smul_set_smul {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} {s : Set G} {g : G} (hB : MulAction.IsBlock G B) (hgs : ¬g B s B) :
                  Disjoint (g B) (s B)
                  theorem AddAction.IsBlock.disjoint_vadd_set_vadd {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} {s : Set G} {g : G} (hB : AddAction.IsBlock G B) (hgs : ¬g +ᵥ B s +ᵥ B) :
                  Disjoint (g +ᵥ B) (s +ᵥ B)
                  theorem MulAction.IsBlock.disjoint_smul_smul_set {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} {s : Set G} {g : G} (hB : MulAction.IsBlock G B) (hgs : ¬g B s B) :
                  Disjoint (s B) (g B)
                  theorem AddAction.IsBlock.disjoint_vadd_vadd_set {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} {s : Set G} {g : G} (hB : AddAction.IsBlock G B) (hgs : ¬g +ᵥ B s +ᵥ B) :
                  Disjoint (s +ᵥ B) (g +ᵥ B)
                  theorem MulAction.IsBlock.smul_eq_smul_of_nonempty {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} :
                  MulAction.IsBlock G B∀ ⦃g₁ g₂ : G⦄, (g₁ B g₂ B).Nonemptyg₁ B = g₂ B

                  Alias of the forward direction of MulAction.isBlock_iff_smul_eq_smul_of_nonempty.

                  theorem MulAction.IsBlock.pairwiseDisjoint_range_smul {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} :
                  MulAction.IsBlock G B(Set.range fun (g : G) => g B).PairwiseDisjoint id

                  Alias of the forward direction of MulAction.isBlock_iff_pairwiseDisjoint_range_smul.

                  theorem MulAction.IsBlock.smul_eq_smul_or_disjoint {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} :
                  MulAction.IsBlock G B∀ (g₁ g₂ : G), g₁ B = g₂ B Disjoint (g₁ B) (g₂ B)

                  Alias of the forward direction of MulAction.isBlock_iff_smul_eq_smul_or_disjoint.

                  theorem MulAction.IsFixedBlock.isBlock {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} (hfB : MulAction.IsFixedBlock G B) :

                  A fixed block is a block.

                  theorem AddAction.IsFixedBlock.isBlock {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} (hfB : AddAction.IsFixedBlock G B) :

                  A fixed block is a block.

                  @[simp]
                  theorem MulAction.IsBlock.empty {G : Type u_1} {X : Type u_2} [SMul G X] :

                  The empty set is a block.

                  @[simp]
                  theorem AddAction.IsBlock.empty {G : Type u_1} {X : Type u_2} [VAdd G X] :

                  The empty set is a block.

                  theorem MulAction.IsBlock.singleton {G : Type u_1} {X : Type u_2} [SMul G X] {a : X} :

                  A singleton is a block.

                  theorem AddAction.IsBlock.singleton {G : Type u_1} {X : Type u_2} [VAdd G X] {a : X} :

                  A singleton is a block.

                  theorem MulAction.IsBlock.of_subsingleton {G : Type u_1} {X : Type u_2} [SMul G X] {B : Set X} (hB : B.Subsingleton) :

                  Subsingletons are (trivial) blocks.

                  theorem AddAction.IsBlock.of_subsingleton {G : Type u_1} {X : Type u_2} [VAdd G X] {B : Set X} (hB : B.Subsingleton) :

                  Subsingletons are (trivial) blocks.

                  A fixed block is an invariant block.

                  A fixed block is an invariant block.

                  theorem MulAction.IsBlock.disjoint_smul_right {M : Type u_1} {X : Type u_2} [Monoid M] [MulAction M X] {B : Set X} {s : Set M} (hB : MulAction.IsBlock M B) (hs : ¬B s B) :
                  Disjoint B (s B)
                  theorem AddAction.IsBlock.disjoint_vadd_right {M : Type u_1} {X : Type u_2} [AddMonoid M] [AddAction M X] {B : Set X} {s : Set M} (hB : AddAction.IsBlock M B) (hs : ¬B s +ᵥ B) :
                  Disjoint B (s +ᵥ B)
                  theorem MulAction.IsBlock.disjoint_smul_left {M : Type u_1} {X : Type u_2} [Monoid M] [MulAction M X] {B : Set X} {s : Set M} (hB : MulAction.IsBlock M B) (hs : ¬B s B) :
                  Disjoint (s B) B
                  theorem AddAction.IsBlock.disjoint_vadd_left {M : Type u_1} {X : Type u_2} [AddMonoid M] [AddAction M X] {B : Set X} {s : Set M} (hB : AddAction.IsBlock M B) (hs : ¬B s +ᵥ B) :
                  Disjoint (s +ᵥ B) B
                  theorem MulAction.isBlock_iff_disjoint_smul_of_ne {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B ∀ ⦃g : G⦄, g B BDisjoint (g B) B
                  theorem AddAction.isBlock_iff_disjoint_vadd_of_ne {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B ∀ ⦃g : G⦄, g +ᵥ B BDisjoint (g +ᵥ B) B
                  theorem MulAction.isBlock_iff_smul_eq_of_nonempty {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B ∀ ⦃g : G⦄, (g B B).Nonemptyg B = B
                  theorem AddAction.isBlock_iff_vadd_eq_of_nonempty {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B ∀ ⦃g : G⦄, ((g +ᵥ B) B).Nonemptyg +ᵥ B = B
                  theorem MulAction.isBlock_iff_smul_eq_or_disjoint {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B ∀ (g : G), g B = B Disjoint (g B) B
                  theorem AddAction.isBlock_iff_vadd_eq_or_disjoint {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B ∀ (g : G), g +ᵥ B = B Disjoint (g +ᵥ B) B
                  theorem MulAction.isBlock_iff_smul_eq_of_mem {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B ∀ ⦃g : G⦄ ⦃a : X⦄, a Bg a Bg B = B
                  theorem AddAction.isBlock_iff_vadd_eq_of_mem {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B ∀ ⦃g : G⦄ ⦃a : X⦄, a Bg +ᵥ a Bg +ᵥ B = B
                  theorem MulAction.IsBlock.disjoint_smul_of_ne {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B∀ ⦃g : G⦄, g B BDisjoint (g B) B

                  Alias of the forward direction of MulAction.isBlock_iff_disjoint_smul_of_ne.

                  theorem AddAction.IsBlock.disjoint_vadd_of_ne {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B∀ ⦃g : G⦄, g +ᵥ B BDisjoint (g +ᵥ B) B
                  theorem MulAction.IsBlock.smul_eq_of_nonempty {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B∀ ⦃g : G⦄, (g B B).Nonemptyg B = B

                  Alias of the forward direction of MulAction.isBlock_iff_smul_eq_of_nonempty.

                  theorem AddAction.IsBlock.vadd_eq_of_nonempty {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B∀ ⦃g : G⦄, ((g +ᵥ B) B).Nonemptyg +ᵥ B = B
                  theorem MulAction.IsBlock.smul_eq_or_disjoint {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B∀ (g : G), g B = B Disjoint (g B) B

                  Alias of the forward direction of MulAction.isBlock_iff_smul_eq_or_disjoint.

                  theorem AddAction.IsBlock.vadd_eq_or_disjoint {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B∀ (g : G), g +ᵥ B = B Disjoint (g +ᵥ B) B
                  theorem MulAction.IsBlock.smul_eq_of_mem {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  MulAction.IsBlock G B∀ ⦃g : G⦄ ⦃a : X⦄, a Bg a Bg B = B

                  Alias of the forward direction of MulAction.isBlock_iff_smul_eq_of_mem.

                  theorem AddAction.IsBlock.vadd_eq_of_mem {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  AddAction.IsBlock G B∀ ⦃g : G⦄ ⦃a : X⦄, a Bg +ᵥ a Bg +ᵥ B = B
                  theorem MulAction.IsBlock.subgroup {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} {H : Subgroup G} (hB : MulAction.IsBlock G B) :

                  If B is a G-block, then it is also a H-block for any subgroup H of G.

                  theorem AddAction.IsBlock.addSubgroup {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} {H : AddSubgroup G} (hB : AddAction.IsBlock G B) :

                  If B is a G-block, then it is also a H-block for any subgroup H of G.

                  A block of a group action is invariant iff it is fixed.

                  A block of a group action is invariant iff it is fixed.

                  An invariant block of a group action is a fixed block.

                  An invariant block of a group action is a fixed block.

                  theorem MulAction.IsInvariantBlock.isBlock {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} (hB : MulAction.IsInvariantBlock G B) :

                  An invariant block of a group action is a block.

                  An invariant block of a group action is a block.

                  theorem MulAction.IsFixedBlock.univ {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] :

                  The full set is a fixed block.

                  theorem AddAction.IsFixedBlock.univ {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] :

                  The full set is a fixed block.

                  @[simp]
                  theorem MulAction.IsBlock.univ {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] :

                  The full set is a block.

                  @[simp]
                  theorem AddAction.IsBlock.univ {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] :

                  The full set is a block.

                  theorem MulAction.IsBlock.inter {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B₁ B₂ : Set X} (h₁ : MulAction.IsBlock G B₁) (h₂ : MulAction.IsBlock G B₂) :
                  MulAction.IsBlock G (B₁ B₂)

                  The intersection of two blocks is a block.

                  theorem AddAction.IsBlock.inter {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B₁ B₂ : Set X} (h₁ : AddAction.IsBlock G B₁) (h₂ : AddAction.IsBlock G B₂) :
                  AddAction.IsBlock G (B₁ B₂)

                  The intersection of two blocks is a block.

                  theorem MulAction.IsBlock.iInter {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {ι : Sort u_3} {B : ιSet X} (hB : ∀ (i : ι), MulAction.IsBlock G (B i)) :
                  MulAction.IsBlock G (⋂ (i : ι), B i)

                  An intersection of blocks is a block.

                  theorem AddAction.IsBlock.iInter {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {ι : Sort u_3} {B : ιSet X} (hB : ∀ (i : ι), AddAction.IsBlock G (B i)) :
                  AddAction.IsBlock G (⋂ (i : ι), B i)

                  An intersection of blocks is a block.

                  theorem MulAction.IsTrivialBlock.isBlock {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} (hB : MulAction.IsTrivialBlock B) :

                  A trivial block is a block.

                  A trivial block is a block.

                  theorem MulAction.IsFixedBlock.orbit {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] (a : X) :

                  An orbit is a fixed block.

                  theorem AddAction.IsFixedBlock.orbit {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] (a : X) :

                  An orbit is a fixed block.

                  theorem MulAction.IsBlock.orbit {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] (a : X) :

                  An orbit is a block.

                  theorem AddAction.IsBlock.orbit {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] (a : X) :

                  An orbit is a block.

                  theorem MulAction.isBlock_top {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} :
                  theorem AddAction.isBlock_top {G : Type u_1} [AddGroup G] {X : Type u_2} [AddAction G X] {B : Set X} :
                  theorem MulAction.IsBlock.preimage {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} {H : Type u_3} {Y : Type u_4} [Group H] [MulAction H Y] {φ : HG} (j : Y →ₑ[φ] X) (hB : MulAction.IsBlock G B) :
                  theorem MulAction.IsBlock.image {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} {H : Type u_3} {Y : Type u_4} [Group H] [MulAction H Y] {φ : G →* H} (j : X →ₑ[φ] Y) (hφ : Function.Surjective φ) (hj : Function.Injective j) (hB : MulAction.IsBlock G B) :
                  theorem MulAction.IsBlock.subtype_val_preimage {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} {C : SubMulAction G X} (hB : MulAction.IsBlock G B) :
                  MulAction.IsBlock G (Subtype.val ⁻¹' B)
                  theorem MulAction.isBlock_subtypeVal {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {C : SubMulAction G X} {B : Set C} :
                  theorem MulAction.IsBlock.of_subgroup_of_conjugate {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} {H : Subgroup G} (hB : MulAction.IsBlock (↥H) B) (g : G) :
                  MulAction.IsBlock (↥(Subgroup.map (MulEquiv.toMonoidHom (MulAut.conj g)) H)) (g B)
                  theorem MulAction.IsBlock.translate {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} (g : G) (hB : MulAction.IsBlock G B) :

                  A translate of a block is a block

                  def MulAction.IsBlockSystem (G : Type u_1) [Group G] {X : Type u_2} [MulAction G X] (ℬ : Set (Set X)) :

                  For SMul G X, a block system of X is a partition of X into blocks for the action of G

                  Equations
                  Instances For
                    theorem MulAction.IsBlock.isBlockSystem {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} [hGX : MulAction.IsPretransitive G X] (hB : MulAction.IsBlock G B) (hBe : B.Nonempty) :
                    MulAction.IsBlockSystem G (Set.range fun (g : G) => g B)

                    Translates of a block form a block system.

                    theorem MulAction.smul_orbit_eq_orbit_smul {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] (N : Subgroup G) [nN : N.Normal] (a : X) (g : G) :
                    g MulAction.orbit (↥N) a = MulAction.orbit (↥N) (g a)
                    theorem MulAction.IsBlock.orbit_of_normal {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {N : Subgroup G} [N.Normal] (a : X) :

                    An orbit of a normal subgroup is a block

                    theorem MulAction.IsBlockSystem.of_normal {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {N : Subgroup G} [N.Normal] :

                    The orbits of a normal subgroup form a block system

                    Annoyingly, it seems like the following two lemmas cannot be unified.

                    theorem MulAction.isBlock_subgroup {G : Type u_1} [Group G] {S : Type u_3} {H : Type u_4} [Group H] [SetLike S H] [SubgroupClass S H] {s : S} [MulAction G H] [IsScalarTower G H H] :

                    See MulAction.isBlock_subgroup' for a version that works for the right action of a group on itself.

                    theorem AddAction.isBlock_addSubgroup {G : Type u_1} [AddGroup G] {S : Type u_3} {H : Type u_4} [AddGroup H] [SetLike S H] [AddSubgroupClass S H] {s : S} [AddAction G H] [VAddAssocClass G H H] :

                    See AddAction.isBlock_subgroup' for a version that works for the right action of a group on itself.

                    theorem MulAction.isBlock_subgroup' {G : Type u_1} [Group G] {S : Type u_3} {H : Type u_4} [Group H] [SetLike S H] [SubgroupClass S H] {s : S} [MulAction G H] [IsScalarTower G Hᵐᵒᵖ H] :

                    See MulAction.isBlock_subgroup for a version that works for the left action of a group on itself.

                    theorem AddAction.isBlock_addSubgroup' {G : Type u_1} [AddGroup G] {S : Type u_3} {H : Type u_4} [AddGroup H] [SetLike S H] [AddSubgroupClass S H] {s : S} [AddAction G H] [VAddAssocClass G Hᵃᵒᵖ H] :

                    See AddAction.isBlock_subgroup for a version that works for the left action of a group on itself.

                    theorem MulAction.IsBlock.of_orbit {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {H : Subgroup G} {a : X} (hH : MulAction.stabilizer G a H) :

                    The orbit of a under a subgroup containing the stabilizer of a is a block

                    theorem MulAction.IsBlock.stabilizer_le {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} (hB : MulAction.IsBlock G B) {a : X} (ha : a B) :

                    If B is a block containing a, then the stabilizer of B contains the stabilizer of a

                    theorem MulAction.IsBlock.orbit_stabilizer_eq {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} [MulAction.IsPretransitive G X] (hB : MulAction.IsBlock G B) {a : X} (ha : a B) :

                    A block containing a is the orbit of a under its stabilizer

                    theorem MulAction.stabilizer_orbit_eq {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {a : X} {H : Subgroup G} (hH : MulAction.stabilizer G a H) :

                    A subgroup containing the stabilizer of a is the stabilizer of the orbit of a under that subgroup

                    def MulAction.block_stabilizerOrderIso (G : Type u_1) [Group G] {X : Type u_2} [MulAction G X] [htGX : MulAction.IsPretransitive G X] (a : X) :
                    { B : Set X // a B MulAction.IsBlock G B } ≃o (Set.Ici (MulAction.stabilizer G a))

                    Order equivalence between blocks in X containing a point a and subgroups of G containing the stabilizer of a (Wielandt, th. 7.5)

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem MulAction.IsBlock.ncard_block_eq_relindex {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} (hB : MulAction.IsBlock G B) {x : X} (hx : x B) :
                      B.ncard = (MulAction.stabilizer G x).relindex (MulAction.stabilizer G B)
                      theorem MulAction.IsBlock.ncard_block_mul_ncard_orbit_eq {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} (hB : MulAction.IsBlock G B) (hB_ne : B.Nonempty) :
                      B.ncard * (MulAction.orbit G B).ncard = Nat.card X

                      The cardinality of the ambient space is the product of the cardinality of a block by the cardinality of the set of translates of that block

                      theorem MulAction.IsBlock.ncard_dvd_card {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} (hB : MulAction.IsBlock G B) (hB_ne : B.Nonempty) :
                      B.ncard Nat.card X

                      The cardinality of a block divides the cardinality of the ambient type

                      theorem MulAction.IsBlock.eq_univ_of_card_lt {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} [hX : Finite X] (hB : MulAction.IsBlock G B) (hB' : Nat.card X < B.ncard * 2) :
                      B = Set.univ

                      A too large block is equal to univ

                      @[deprecated MulAction.IsBlock.eq_univ_of_card_lt]
                      theorem MulAction.IsBlock.eq_univ_card_lt {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} [hX : Finite X] (hB : MulAction.IsBlock G B) (hB' : Nat.card X < B.ncard * 2) :
                      B = Set.univ

                      Alias of MulAction.IsBlock.eq_univ_of_card_lt.


                      A too large block is equal to univ

                      theorem MulAction.IsBlock.subsingleton_of_card_lt {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} [Finite X] (hB : MulAction.IsBlock G B) (hB' : Nat.card X < 2 * (MulAction.orbit G B).ncard) :
                      B.Subsingleton

                      If a block has too many translates, then it is a (sub)singleton

                      theorem MulAction.IsBlock.of_subset {G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] [MulAction.IsPretransitive G X] {B : Set X} (a : X) (hfB : B.Finite) :
                      MulAction.IsBlock G (⋂ (k : G), ⋂ (_ : a k B), k B)

                      The intersection of the translates of a finite subset which contain a given point is a block (Wielandt, th. 7.3 )