Documentation

Mathlib.Algebra.Pointwise.Stabilizer

Stabilizer of a set under a pointwise action #

This file characterises the stabilizer of a set/finset under the pointwise action of a group.

Stabilizer of a set #

@[simp]
theorem MulAction.stabilizer_empty {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] :
@[simp]
@[simp]
theorem MulAction.stabilizer_univ {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] :
@[simp]
theorem AddAction.stabilizer_univ {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] :
@[simp]
theorem MulAction.stabilizer_singleton {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (b : α) :
@[simp]
theorem AddAction.stabilizer_singleton {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (b : α) :
theorem MulAction.mem_stabilizer_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} :
a MulAction.stabilizer G s ∀ (b : α), a b s b s
theorem AddAction.mem_stabilizer_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} :
a AddAction.stabilizer G s ∀ (b : α), a +ᵥ b s b s
theorem MulAction.map_stabilizer_le {G : Type u_1} {H : Type u_2} [Group G] [Group H] (f : G →* H) (s : Set G) :
theorem AddAction.map_stabilizer_le {G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G →+ H) (s : Set G) :
@[simp]
theorem MulAction.stabilizer_mul_self {G : Type u_1} [Group G] (s : Set G) :
(MulAction.stabilizer G s) * s = s
@[simp]
theorem AddAction.stabilizer_add_self {G : Type u_1} [AddGroup G] (s : Set G) :
(AddAction.stabilizer G s) + s = s
theorem MulAction.stabilizer_inf_stabilizer_le_stabilizer_apply₂ {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s t : Set α} {f : Set αSet αSet α} (hf : ∀ (a : G), a f s t = f (a s) (a t)) :
theorem AddAction.stabilizer_inf_stabilizer_le_stabilizer_apply₂ {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s t : Set α} {f : Set αSet αSet α} (hf : ∀ (a : G), a +ᵥ f s t = f (a +ᵥ s) (a +ᵥ t)) :
theorem MulAction.stabilizer_union_eq_left {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : MulAction.stabilizer G s MulAction.stabilizer G t) (hstab_union : MulAction.stabilizer G (s t) MulAction.stabilizer G t) :
theorem AddAction.stabilizer_union_eq_left {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : AddAction.stabilizer G s AddAction.stabilizer G t) (hstab_union : AddAction.stabilizer G (s t) AddAction.stabilizer G t) :
theorem MulAction.stabilizer_union_eq_right {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : MulAction.stabilizer G t MulAction.stabilizer G s) (hstab_union : MulAction.stabilizer G (s t) MulAction.stabilizer G s) :
theorem AddAction.stabilizer_union_eq_right {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : AddAction.stabilizer G t AddAction.stabilizer G s) (hstab_union : AddAction.stabilizer G (s t) AddAction.stabilizer G s) :
theorem MulAction.op_smul_set_stabilizer_subset {G : Type u_1} [Group G] {a : G} {s : Set G} (ha : a s) :
theorem AddAction.op_vadd_set_stabilizer_subset {G : Type u_1} [AddGroup G] {a : G} {s : Set G} (ha : a s) :
theorem MulAction.stabilizer_subset_div_right {G : Type u_1} [Group G] {a : G} {s : Set G} (ha : a s) :
(MulAction.stabilizer G s) s / {a}
theorem AddAction.stabilizer_subset_sub_right {G : Type u_1} [AddGroup G] {a : G} {s : Set G} (ha : a s) :
(AddAction.stabilizer G s) s - {a}
theorem MulAction.stabilizer_finite {G : Type u_1} [Group G] {s : Set G} (hs₀ : s.Nonempty) (hs : s.Finite) :
(↑(MulAction.stabilizer G s)).Finite
theorem AddAction.stabilizer_finite {G : Type u_1} [AddGroup G] {s : Set G} (hs₀ : s.Nonempty) (hs : s.Finite) :
(↑(AddAction.stabilizer G s)).Finite
theorem MulAction.smul_set_stabilizer_subset {G : Type u_1} [CommGroup G] {s : Set G} {a : G} (ha : a s) :
theorem AddAction.vadd_set_stabilizer_subset {G : Type u_1} [AddCommGroup G] {s : Set G} {a : G} (ha : a s) :

Stabilizer of a subgroup #

@[simp]
theorem MulAction.stabilizer_subgroup {G : Type u_1} [Group G] (s : Subgroup G) :
@[simp]

Stabilizer of a finset #

@[simp]
theorem MulAction.stabilizer_coe_finset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] [DecidableEq α] (s : Finset α) :
@[simp]
@[simp]
theorem MulAction.stabilizer_finset_univ {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] [DecidableEq α] [Fintype α] :
MulAction.stabilizer G Finset.univ =
@[simp]
theorem AddAction.stabilizer_finset_univ {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] [DecidableEq α] [Fintype α] :
AddAction.stabilizer G Finset.univ =
@[simp]
@[simp]
theorem MulAction.mem_stabilizer_finset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a MulAction.stabilizer G s ∀ (b : α), a b s b s
theorem AddAction.mem_stabilizer_finset {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a AddAction.stabilizer G s ∀ (b : α), a +ᵥ b s b s
theorem MulAction.mem_stabilizer_finset' {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a MulAction.stabilizer G s ∀ ⦃b : α⦄, b sa b s
theorem AddAction.mem_stabilizer_finset' {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a AddAction.stabilizer G s ∀ ⦃b : α⦄, b sa +ᵥ b s

Stabilizer of a finite set #

theorem MulAction.mem_stabilizer_set_iff_subset_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : s.Finite) :
theorem AddAction.mem_stabilizer_set_iff_subset_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} (hs : s.Finite) :
theorem MulAction.mem_stabilizer_set_iff_smul_set_subset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : s.Finite) :
theorem AddAction.mem_stabilizer_set_iff_vadd_set_subset {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} (hs : s.Finite) :
@[deprecated MulAction.mem_stabilizer_set_iff_subset_smul_set]
theorem MulAction.mem_stabilizer_of_finite_iff_smul_le {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : s.Finite) :

Alias of MulAction.mem_stabilizer_set_iff_subset_smul_set.

@[deprecated MulAction.mem_stabilizer_set_iff_smul_set_subset]
theorem MulAction.mem_stabilizer_of_finite_iff_le_smul {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : s.Finite) :

Alias of MulAction.mem_stabilizer_set_iff_smul_set_subset.

theorem MulAction.mem_stabilizer_set' {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : s.Finite) :
a MulAction.stabilizer G s ∀ ⦃b : α⦄, b sa b s
theorem AddAction.mem_stabilizer_set' {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} (hs : s.Finite) :
a AddAction.stabilizer G s ∀ ⦃b : α⦄, b sa +ᵥ b s

Stabilizer in a commutative group #

@[simp]
theorem MulAction.mul_stabilizer_self {G : Type u_1} [CommGroup G] (s : Set G) :
s * (MulAction.stabilizer G s) = s
@[simp]
theorem AddAction.add_stabilizer_self {G : Type u_1} [AddCommGroup G] (s : Set G) :
s + (AddAction.stabilizer G s) = s