Stabilizer of a set under a pointwise action #
This file characterises the stabilizer of a set/finset under the pointwise action of a group.
Stabilizer of a set #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
MulAction.stabilizer_singleton
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
(b : α)
:
@[simp]
theorem
AddAction.stabilizer_singleton
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
(b : α)
:
@[simp]
@[simp]
theorem
MulAction.stabilizer_union_eq_left
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
{s t : Set α}
(hdisj : Disjoint s t)
(hstab : stabilizer G s ≤ stabilizer G t)
(hstab_union : stabilizer G (s ∪ t) ≤ stabilizer G t)
:
theorem
AddAction.stabilizer_union_eq_left
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
{s t : Set α}
(hdisj : Disjoint s t)
(hstab : stabilizer G s ≤ stabilizer G t)
(hstab_union : stabilizer G (s ∪ t) ≤ stabilizer G t)
:
theorem
MulAction.stabilizer_union_eq_right
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
{s t : Set α}
(hdisj : Disjoint s t)
(hstab : stabilizer G t ≤ stabilizer G s)
(hstab_union : stabilizer G (s ∪ t) ≤ stabilizer G s)
:
theorem
AddAction.stabilizer_union_eq_right
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
{s t : Set α}
(hdisj : Disjoint s t)
(hstab : stabilizer G t ≤ stabilizer G s)
(hstab_union : stabilizer G (s ∪ t) ≤ stabilizer G s)
:
theorem
MulAction.op_smul_set_stabilizer_subset
{G : Type u_1}
[Group G]
{a : G}
{s : Set G}
(ha : a ∈ s)
:
theorem
AddAction.op_vadd_set_stabilizer_subset
{G : Type u_1}
[AddGroup G]
{a : G}
{s : Set G}
(ha : a ∈ s)
:
theorem
MulAction.stabilizer_finite
{G : Type u_1}
[Group G]
{s : Set G}
(hs₀ : s.Nonempty)
(hs : s.Finite)
:
(↑(stabilizer G s)).Finite
theorem
AddAction.stabilizer_finite
{G : Type u_1}
[AddGroup G]
{s : Set G}
(hs₀ : s.Nonempty)
(hs : s.Finite)
:
(↑(stabilizer G s)).Finite
theorem
MulAction.smul_set_stabilizer_subset
{G : Type u_1}
[CommGroup G]
{s : Set G}
{a : G}
(ha : a ∈ s)
:
theorem
AddAction.vadd_set_stabilizer_subset
{G : Type u_1}
[AddCommGroup G]
{s : Set G}
{a : G}
(ha : a ∈ s)
:
Stabilizer of a subgroup #
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Stabilizer of a finset #
@[simp]
theorem
MulAction.stabilizer_coe_finset
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
[DecidableEq α]
(s : Finset α)
:
@[simp]
theorem
AddAction.stabilizer_coe_finset
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
[DecidableEq α]
(s : Finset α)
:
@[simp]
theorem
MulAction.stabilizer_finset_empty
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
[DecidableEq α]
:
@[simp]
theorem
AddAction.stabilizer_finset_empty
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
[DecidableEq α]
:
@[simp]
theorem
MulAction.stabilizer_finset_univ
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
[DecidableEq α]
[Fintype α]
:
@[simp]
theorem
AddAction.stabilizer_finset_univ
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
[DecidableEq α]
[Fintype α]
:
@[simp]
theorem
MulAction.stabilizer_finset_singleton
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
[DecidableEq α]
(b : α)
:
@[simp]
theorem
AddAction.stabilizer_finset_singleton
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
[DecidableEq α]
(b : α)
:
theorem
MulAction.mem_stabilizer_finset
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
AddAction.mem_stabilizer_finset
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
MulAction.mem_stabilizer_finset_iff_subset_smul_finset
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
AddAction.mem_stabilizer_finset_iff_subset_vadd_finset
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
MulAction.mem_stabilizer_finset_iff_smul_finset_subset
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
AddAction.mem_stabilizer_finset_iff_vadd_finset_subset
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
MulAction.mem_stabilizer_finset'
{G : Type u_1}
{α : Type u_3}
[Group G]
[MulAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
theorem
AddAction.mem_stabilizer_finset'
{G : Type u_1}
{α : Type u_3}
[AddGroup G]
[AddAction G α]
{a : G}
[DecidableEq α]
{s : Finset α}
:
Stabilizer of a finite set #
Stabilizer in a commutative group #
@[simp]
@[simp]