Documentation

Mathlib.GroupTheory.GroupAction.Pointwise

Pointwise actions of equivariant maps #

@[simp]
theorem image_smul_setₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [SMul M α] [SMul N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] (f : F) (c : M) (s : Set α) :
f '' (c s) = σ c f '' s
@[simp]
theorem image_vadd_setₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [VAdd M α] [VAdd N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] (f : F) (c : M) (s : Set α) :
f '' (c +ᵥ s) = σ c +ᵥ f '' s
theorem Set.MapsTo.smul_setₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [SMul M α] [SMul N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] {f : F} {s : Set α} {t : Set β} (hst : MapsTo (⇑f) s t) (c : M) :
MapsTo (⇑f) (c s) (σ c t)
theorem Set.MapsTo.vadd_setₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [VAdd M α] [VAdd N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] {f : F} {s : Set α} {t : Set β} (hst : MapsTo (⇑f) s t) (c : M) :
MapsTo (⇑f) (c +ᵥ s) (σ c +ᵥ t)
theorem smul_preimage_set_subsetₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [SMul M α] [SMul N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] (f : F) (c : M) (t : Set β) :
c f ⁻¹' t f ⁻¹' (σ c t)

Translation of preimage is contained in preimage of translation

theorem vadd_preimage_set_subsetₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [VAdd M α] [VAdd N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] (f : F) (c : M) (t : Set β) :
c +ᵥ f ⁻¹' t f ⁻¹' (σ c +ᵥ t)
@[deprecated vadd_preimage_set_subsetₛₗ (since := "2025-03-03")]
theorem vadd_preimage_set_leₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [VAdd M α] [VAdd N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] (f : F) (c : M) (t : Set β) :
c +ᵥ f ⁻¹' t f ⁻¹' (σ c +ᵥ t)

Alias of vadd_preimage_set_subsetₛₗ.

@[deprecated smul_preimage_set_subsetₛₗ (since := "2025-03-03")]
theorem smul_preimage_set_leₛₗ {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [SMul M α] [SMul N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] (f : F) (c : M) (t : Set β) :
c f ⁻¹' t f ⁻¹' (σ c t)

Alias of smul_preimage_set_subsetₛₗ.


Translation of preimage is contained in preimage of translation

theorem preimage_smul_setₛₗ' {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [SMul M α] [SMul N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] {f : F} {t : Set β} {c : M} (hc : Function.Surjective fun (m : α) => c m) (hc' : Function.Injective fun (n : β) => σ c n) :
f ⁻¹' (σ c t) = c f ⁻¹' t

General version of preimage_smul_setₛₗ. This version assumes that the scalar multiplication by c is surjective while the scalar multiplication by σ c is injective.

theorem preimage_vadd_setₛₗ' {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [VAdd M α] [VAdd N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] {f : F} {t : Set β} {c : M} (hc : Function.Surjective fun (m : α) => c +ᵥ m) (hc' : Function.Injective fun (n : β) => σ c +ᵥ n) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t

General version of preimage_vadd_setₛₗ. This version assumes that the vector addition of c is surjective while the vector addition of σ c is injective.

theorem preimage_smul_setₛₗ_of_isUnit_isUnit {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [Monoid M] [Monoid N] [MulAction M α] [MulAction N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] {c : M} (f : F) (hc : IsUnit c) (hc' : IsUnit (σ c)) (t : Set β) :
f ⁻¹' (σ c t) = c f ⁻¹' t

preimage_smul_setₛₗ when both scalars act by unit

theorem preimage_vadd_setₛₗ_of_isAddUnit_isAddUnit {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] {c : M} (f : F) (hc : IsAddUnit c) (hc' : IsAddUnit (σ c)) (t : Set β) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t
@[deprecated preimage_vadd_setₛₗ_of_isAddUnit_isAddUnit (since := "2025-03-04")]
theorem preimage_vadd_setₛₗ_of_addUnits {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N β] [FunLike F α β] [AddActionSemiHomClass F σ α β] {c : M} (f : F) (hc : IsAddUnit c) (hc' : IsAddUnit (σ c)) (t : Set β) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t

Alias of preimage_vadd_setₛₗ_of_isAddUnit_isAddUnit.

@[deprecated preimage_smul_setₛₗ_of_isUnit_isUnit (since := "2025-03-04")]
theorem preimage_smul_setₛₗ_of_units {M : Type u_1} {N : Type u_2} {F : Type u_3} {α : Type u_4} {β : Type u_5} {σ : MN} [Monoid M] [Monoid N] [MulAction M α] [MulAction N β] [FunLike F α β] [MulActionSemiHomClass F σ α β] {c : M} (f : F) (hc : IsUnit c) (hc' : IsUnit (σ c)) (t : Set β) :
f ⁻¹' (σ c t) = c f ⁻¹' t

Alias of preimage_smul_setₛₗ_of_isUnit_isUnit.


preimage_smul_setₛₗ when both scalars act by unit

theorem IsUnit.preimage_smul_setₛₗ {M : Type u_1} {N : Type u_2} {α : Type u_4} {β : Type u_5} [Monoid M] [Monoid N] [MulAction M α] [MulAction N β] {c : M} {F : Type u_6} {G : Type u_7} [FunLike G M N] [MonoidHomClass G M N] (σ : G) [FunLike F α β] [MulActionSemiHomClass F (⇑σ) α β] (f : F) (hc : IsUnit c) (t : Set β) :
f ⁻¹' (σ c t) = c f ⁻¹' t

preimage_smul_setₛₗ when c is a unit and σ is a monoid homomorphism.

theorem IsAddUnit.preimage_vadd_setₛₗ {M : Type u_1} {N : Type u_2} {α : Type u_4} {β : Type u_5} [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N β] {c : M} {F : Type u_6} {G : Type u_7} [FunLike G M N] [AddMonoidHomClass G M N] (σ : G) [FunLike F α β] [AddActionSemiHomClass F (⇑σ) α β] (f : F) (hc : IsAddUnit c) (t : Set β) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t
@[deprecated IsAddUnit.preimage_vadd_setₛₗ (since := "2025-03-04")]
theorem preimage_vadd_setₛₗ {M : Type u_1} {N : Type u_2} {α : Type u_4} {β : Type u_5} [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N β] {c : M} {F : Type u_6} {G : Type u_7} [FunLike G M N] [AddMonoidHomClass G M N] (σ : G) [FunLike F α β] [AddActionSemiHomClass F (⇑σ) α β] (f : F) (hc : IsAddUnit c) (t : Set β) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t

Alias of IsAddUnit.preimage_vadd_setₛₗ.

@[deprecated IsUnit.preimage_smul_setₛₗ (since := "2025-03-04")]
theorem preimage_smul_setₛₗ {M : Type u_1} {N : Type u_2} {α : Type u_4} {β : Type u_5} [Monoid M] [Monoid N] [MulAction M α] [MulAction N β] {c : M} {F : Type u_6} {G : Type u_7} [FunLike G M N] [MonoidHomClass G M N] (σ : G) [FunLike F α β] [MulActionSemiHomClass F (⇑σ) α β] (f : F) (hc : IsUnit c) (t : Set β) :
f ⁻¹' (σ c t) = c f ⁻¹' t

Alias of IsUnit.preimage_smul_setₛₗ.


preimage_smul_setₛₗ when c is a unit and σ is a monoid homomorphism.

theorem MonoidHom.preimage_smul_setₛₗ {M : Type u_1} {N : Type u_2} {α : Type u_4} {β : Type u_5} [Monoid M] [Monoid N] [MulAction M α] [MulAction N β] {c : M} {F : Type u_6} (σ : M →* N) [FunLike F α β] [MulActionSemiHomClass F (⇑σ) α β] (f : F) (hc : IsUnit c) (t : Set β) :
f ⁻¹' (σ c t) = c f ⁻¹' t

preimage_smul_setₛₗ when c is a unit and σ is a monoid homomorphism.

theorem AddMonoidHom.preimage_vadd_setₛₗ {M : Type u_1} {N : Type u_2} {α : Type u_4} {β : Type u_5} [AddMonoid M] [AddMonoid N] [AddAction M α] [AddAction N β] {c : M} {F : Type u_6} (σ : M →+ N) [FunLike F α β] [AddActionSemiHomClass F (⇑σ) α β] (f : F) (hc : IsAddUnit c) (t : Set β) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t
theorem Group.preimage_smul_setₛₗ {G : Type u_1} {H : Type u_2} {α : Type u_3} {β : Type u_4} [Group G] [Group H] (σ : GH) [MulAction G α] [MulAction H β] {F : Type u_5} [FunLike F α β] [MulActionSemiHomClass F σ α β] (f : F) (c : G) (t : Set β) :
f ⁻¹' (σ c t) = c f ⁻¹' t

preimage_smul_setₛₗ in the context of groups

theorem AddGroup.preimage_vadd_setₛₗ {G : Type u_1} {H : Type u_2} {α : Type u_3} {β : Type u_4} [AddGroup G] [AddGroup H] (σ : GH) [AddAction G α] [AddAction H β] {F : Type u_5} [FunLike F α β] [AddActionSemiHomClass F σ α β] (f : F) (c : G) (t : Set β) :
f ⁻¹' (σ c +ᵥ t) = c +ᵥ f ⁻¹' t
theorem image_smul_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [SMul M α] [SMul M β] [FunLike F α β] [MulActionHomClass F M α β] (f : F) (c : M) (s : Set α) :
f '' (c s) = c f '' s
theorem image_vadd_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [VAdd M α] [VAdd M β] [FunLike F α β] [AddActionHomClass F M α β] (f : F) (c : M) (s : Set α) :
f '' (c +ᵥ s) = c +ᵥ f '' s
theorem smul_preimage_set_subset {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [SMul M α] [SMul M β] [FunLike F α β] [MulActionHomClass F M α β] (f : F) (c : M) (t : Set β) :
c f ⁻¹' t f ⁻¹' (c t)
theorem vadd_preimage_set_subset {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [VAdd M α] [VAdd M β] [FunLike F α β] [AddActionHomClass F M α β] (f : F) (c : M) (t : Set β) :
c +ᵥ f ⁻¹' t f ⁻¹' (c +ᵥ t)
@[deprecated vadd_preimage_set_subset (since := "2025-03-04")]
theorem vadd_preimage_set_le {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [VAdd M α] [VAdd M β] [FunLike F α β] [AddActionHomClass F M α β] (f : F) (c : M) (t : Set β) :
c +ᵥ f ⁻¹' t f ⁻¹' (c +ᵥ t)

Alias of vadd_preimage_set_subset.

@[deprecated smul_preimage_set_subset (since := "2025-03-04")]
theorem smul_preimage_set_le {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [SMul M α] [SMul M β] [FunLike F α β] [MulActionHomClass F M α β] (f : F) (c : M) (t : Set β) :
c f ⁻¹' t f ⁻¹' (c t)

Alias of smul_preimage_set_subset.

theorem Set.MapsTo.smul_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [SMul M α] [SMul M β] [FunLike F α β] [MulActionHomClass F M α β] {f : F} {s : Set α} {t : Set β} (hst : MapsTo (⇑f) s t) (c : M) :
MapsTo (⇑f) (c s) (c t)
theorem Set.MapsTo.vadd_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [VAdd M α] [VAdd M β] [FunLike F α β] [AddActionHomClass F M α β] {f : F} {s : Set α} {t : Set β} (hst : MapsTo (⇑f) s t) (c : M) :
MapsTo (⇑f) (c +ᵥ s) (c +ᵥ t)
theorem IsUnit.preimage_smul_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [Monoid M] [MulAction M α] [MulAction M β] [FunLike F α β] [MulActionHomClass F M α β] (f : F) {c : M} (hc : IsUnit c) (t : Set β) :
f ⁻¹' (c t) = c f ⁻¹' t
theorem IsAddUnit.preimage_vadd_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [AddMonoid M] [AddAction M α] [AddAction M β] [FunLike F α β] [AddActionHomClass F M α β] (f : F) {c : M} (hc : IsAddUnit c) (t : Set β) :
f ⁻¹' (c +ᵥ t) = c +ᵥ f ⁻¹' t
@[deprecated IsAddUnit.preimage_vadd_set (since := "2025-03-04")]
theorem preimage_vadd_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [AddMonoid M] [AddAction M α] [AddAction M β] [FunLike F α β] [AddActionHomClass F M α β] (f : F) {c : M} (hc : IsAddUnit c) (t : Set β) :
f ⁻¹' (c +ᵥ t) = c +ᵥ f ⁻¹' t

Alias of IsAddUnit.preimage_vadd_set.

@[deprecated IsUnit.preimage_smul_set (since := "2025-03-04")]
theorem preimage_smul_set {M : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [Monoid M] [MulAction M α] [MulAction M β] [FunLike F α β] [MulActionHomClass F M α β] (f : F) {c : M} (hc : IsUnit c) (t : Set β) :
f ⁻¹' (c t) = c f ⁻¹' t

Alias of IsUnit.preimage_smul_set.

theorem Group.preimage_smul_set {G : Type u_1} [Group G] {α : Type u_2} {β : Type u_3} [MulAction G α] [MulAction G β] {F : Type u_4} [FunLike F α β] [MulActionHomClass F G α β] (f : F) (c : G) (t : Set β) :
f ⁻¹' (c t) = c f ⁻¹' t
theorem AddGroup.preimage_vadd_set {G : Type u_1} [AddGroup G] {α : Type u_2} {β : Type u_3} [AddAction G α] [AddAction G β] {F : Type u_4} [FunLike F α β] [AddActionHomClass F G α β] (f : F) (c : G) (t : Set β) :
f ⁻¹' (c +ᵥ t) = c +ᵥ f ⁻¹' t