Documentation

Mathlib.CategoryTheory.Galois.Basic

Definition and basic properties of Galois categories #

We define the notion of a Galois category and a fiber functor as in SGA1, following the definitions in Lenstras notes (see below for a reference).

Main definitions #

Implementation details #

We mostly follow Def 3.1 in Lenstras notes. In axiom (G3) we omit the factorisation of morphisms in epimorphisms and monomorphisms as this is not needed for the proof of the fundamental theorem on Galois categories (and then follows from it).

References #

A category C is a PreGalois category if it satisfies all properties of a Galois category in the sense of SGA1 that do not involve a fiber functor. A Galois category should furthermore admit a fiber functor.

The only difference between [PreGaloisCategory C] (F : C ⥤ FintypeCat) [FiberFunctor F] and [GaloisCategory C] is that the former fixes one fiber functor F.

Definition of a (Pre)Galois category. Lenstra, Def 3.1, (G1)-(G3)

Instances

    Definition of a fiber functor from a Galois category. Lenstra, Def 3.1, (G4)-(G6)

    Instances

      An object of a category C is connected if it is not initial and has no non-trivial subobjects. Lenstra, 3.12.

      Instances

        A functor is said to preserve connectedness if whenever X : C is connected, also F.obj X is connected.

        Instances

          Fiber functors reflect monomorphisms.

          If F is a fiber functor and E is an equivalence between categories of finite types, then F ⋙ E is again a fiber functor.

          theorem CategoryTheory.PreGaloisCategory.mulAction_def {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) {X : C} (σ : Aut F) (x : (F.obj X)) :
          σ x = σ.hom.app X x
          theorem CategoryTheory.PreGaloisCategory.mulAction_naturality {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) {X Y : C} (σ : Aut F) (f : X Y) (x : (F.obj X)) :
          σ F.map f x = F.map f (σ x)

          An object that is neither initial or connected has a non-trivial subobject.

          theorem CategoryTheory.PreGaloisCategory.card_fiber_eq_of_iso {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) {X Y : C} (i : X Y) :
          Nat.card (F.obj X) = Nat.card (F.obj Y)

          The cardinality of the fiber is preserved under isomorphisms.

          An object is initial if and only if its fiber is empty.

          An object is not initial if and only if its fiber is nonempty.

          An object whose fiber is inhabited is not initial.

          The fiber of a connected object is nonempty.

          noncomputable def CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X Y : C} (f g : X Y) :
          (F.obj (Limits.equalizer f g)) { x : (F.obj X) // F.map f x = F.map g x }

          The fiber of the equalizer of f g : X ⟶ Y is equivalent to the set of agreement of f and g.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.PreGaloisCategory.fiberEqualizerEquiv_symm_ι_apply {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X Y : C} {f g : X Y} (x : (F.obj X)) (h : F.map f x = F.map g x) :
            F.map (Limits.equalizer.ι f g) ((fiberEqualizerEquiv F f g).symm x, h) = x
            noncomputable def CategoryTheory.PreGaloisCategory.fiberPullbackEquiv {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X A B : C} (f : A X) (g : B X) :
            (F.obj (Limits.pullback f g)) { p : (F.obj A) × (F.obj B) // F.map f p.1 = F.map g p.2 }

            The fiber of the pullback is the fiber product of the fibers.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_fst_apply {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X A B : C} {f : A X} {g : B X} (a : (F.obj A)) (b : (F.obj B)) (h : F.map f a = F.map g b) :
              F.map (Limits.pullback.fst f g) ((fiberPullbackEquiv F f g).symm (a, b), h) = a
              @[simp]
              theorem CategoryTheory.PreGaloisCategory.fiberPullbackEquiv_symm_snd_apply {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X A B : C} {f : A X} {g : B X} (a : (F.obj A)) (b : (F.obj B)) (h : F.map f a = F.map g b) :
              F.map (Limits.pullback.snd f g) ((fiberPullbackEquiv F f g).symm (a, b), h) = b
              noncomputable def CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] (X Y : C) :
              (F.obj (X Y)) (F.obj X) × (F.obj Y)

              The fiber of the binary product is the binary product of the fibers.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_fst_apply {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X Y : C} (x : (F.obj X)) (y : (F.obj Y)) :
                F.map Limits.prod.fst ((fiberBinaryProductEquiv F X Y).symm (x, y)) = x
                @[simp]
                theorem CategoryTheory.PreGaloisCategory.fiberBinaryProductEquiv_symm_snd_apply {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X Y : C} (x : (F.obj X)) (y : (F.obj Y)) :
                F.map Limits.prod.snd ((fiberBinaryProductEquiv F X Y).symm (x, y)) = y

                The evaluation map is injective for connected objects.

                The evaluation map on automorphisms is injective for connected objects.

                A morphism from an object X with non-empty fiber to a connected object A is an epimorphism.

                An epimorphism induces a surjective map on fibers.

                instance CategoryTheory.PreGaloisCategory.nonempty_fiber_pi_of_nonempty_of_finite {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {ι : Type u_1} [Finite ι] (X : ιC) [∀ (i : ι), Nonempty (F.obj (X i))] :
                Nonempty (F.obj (∏ᶜ X))

                If X : ι → C is a finite family of objects with non-empty fiber, then also ∏ᶜ X has non-empty fiber.

                theorem CategoryTheory.PreGaloisCategory.isIso_of_mono_of_eq_card_fiber {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] {X Y : C} (f : X Y) [Mono f] (h : Nat.card (F.obj X) = Nat.card (F.obj Y)) :

                A mono between objects with equally sized fibers is an iso.

                Along a mono that is not an iso, the cardinality of the fiber strictly increases.

                The cardinality of the fiber of a not-initial object is non-zero.

                theorem CategoryTheory.PreGaloisCategory.card_fiber_coprod_eq_sum {C : Type u₁} [Category.{u₂, u₁} C] (F : Functor C FintypeCat) [PreGaloisCategory C] [FiberFunctor F] (X Y : C) :
                Nat.card (F.obj (X ⨿ Y)) = Nat.card (F.obj X) + Nat.card (F.obj Y)

                The cardinality of the fiber of a coproduct is the sum of the cardinalities of the fibers.

                The cardinality of morphisms A ⟶ X is smaller than the cardinality of the fiber of the target if the source is connected.

                If A is connected, the cardinality of Aut A is smaller than the cardinality of the fiber of A.

                Arbitrarily choose a fiber functor for a Galois category using choice.

                Equations
                Instances For

                  In a GaloisCategory the set of morphisms out of a connected object is finite.

                  In a GaloisCategory the set of automorphism of a connected object is finite.

                  Coproduct inclusions are monic in Galois categories.