Documentation

Mathlib.RingTheory.DividedPowers.DPMorphism

Divided power morphisms #

Let A and B be commutative (semi)rings, let I be an ideal of A and let J be an ideal of B. Given divided power structures on I and J, a ring morphism A →+* B is a divided power morphism if it is compatible with these divided power structures.

Main definitions #

Main results #

Implementation remarks #

We provided both a bundled and an unbundled definition of divided power morphisms. For developing the basic theory, the unbundled version IsDPMorphism is more convenient. However, we anticipate that the bundled version DPMorphism will be better for the development of crystalline cohomology.

References #

structure DividedPowers.IsDPMorphism {A : Type u_1} {B : Type u_2} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) (f : A →+* B) :

Given divided power structures on the A-ideal I and the B-ideal J, a ring morphism A → B is a divided power morphism if it is compatible with these divided power structures.

Instances For
    theorem DividedPowers.isDPMorphism_def {A : Type u_1} {B : Type u_2} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) (f : A →+* B) :
    hI.IsDPMorphism hJ f Ideal.map f I J ∀ {n : }, aI, hJ.dpow n (f a) = f (hI.dpow n a)
    theorem DividedPowers.isDPMorphism_iff {A : Type u_1} {B : Type u_2} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) (f : A →+* B) :
    hI.IsDPMorphism hJ f Ideal.map f I J ∀ (n : ), n 0aI, hJ.dpow n (f a) = f (hI.dpow n a)
    theorem DividedPowers.IsDPMorphism.map_dpow {A : Type u_1} {B : Type u_2} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} {hI : DividedPowers I} {hJ : DividedPowers J} {f : A →+* B} (hf : hI.IsDPMorphism hJ f) {n : } {a : A} (ha : a I) :
    f (hI.dpow n a) = hJ.dpow n (f a)
    theorem DividedPowers.IsDPMorphism.comp {A : Type u_1} {B : Type u_2} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} {hI : DividedPowers I} {hJ : DividedPowers J} {C : Type u_3} [CommSemiring C] {K : Ideal C} (hK : DividedPowers K) {f : A →+* B} {g : B →+* C} (hg : hJ.IsDPMorphism hK g) (hf : hI.IsDPMorphism hJ f) :
    hI.IsDPMorphism hK (g.comp f)
    structure DividedPowers.DPMorphism {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) extends A →+* B :
    Type (max u_3 u_4)

    A bundled divided power morphism between rings endowed with divided power structures.

    Instances For
      theorem DividedPowers.DPMorphism.ext {A : Type u_3} {B : Type u_4} {inst✝ : CommSemiring A} {inst✝¹ : CommSemiring B} {I : Ideal A} {J : Ideal B} {hI : DividedPowers I} {hJ : DividedPowers J} {x y : hI.DPMorphism hJ} (toFun : (↑x.toRingHom).toFun = (↑y.toRingHom).toFun) :
      x = y
      instance DividedPowers.DPMorphism.instFunLike {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) :
      FunLike (hI.DPMorphism hJ) A B
      Equations
      @[simp]
      theorem DividedPowers.DPMorphism.coe_toRingHom {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : hI.DPMorphism hJ} :
      f.toRingHom = f
      @[simp]
      theorem DividedPowers.DPMorphism.toRingHom_apply {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : hI.DPMorphism hJ} {a : A} :
      f.toRingHom a = f a
      theorem DividedPowers.DPMorphism.isDPMorphism {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} {hI : DividedPowers I} {hJ : DividedPowers J} (f : hI.DPMorphism hJ) :
      def DividedPowers.DPMorphism.mk' {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} {hI : DividedPowers I} {hJ : DividedPowers J} {f : A →+* B} (hf : hI.IsDPMorphism hJ f) :

      A constructor for DPMorphism from a ring homomorphism f : A →+* B satisfying IsDPMorphism hI hJ f.

      Equations
      Instances For
        def DividedPowers.ideal_from_ringHom {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : A →+* B} (hf : Ideal.map f I J) :

        Given a ring homomorphism A → B and ideals I ⊆ A and J ⊆ B such that I.map f ≤ J, this is the A-ideal on which f (hI.dpow n x) = hJ.dpow n (f x). See N. Roby, Les algèbres à puissances dividées (Proposition 2).

        Equations
        Instances For
          def DividedPowers.DPMorphism.fromGens {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : A →+* B} {S : Set A} (hS : I = Ideal.span S) (hf : Ideal.map f I J) (h : ∀ {n : }, xS, f (hI.dpow n x) = hJ.dpow n (f x)) :

          The DPMorphism induced by a ring morphism, given that divided powers are compatible on a generating set. See N. Roby, Les algèbres à puissances dividées (Proposition 3).

          Equations
          Instances For

            The identity map as a DPMorphism.

            Equations
            Instances For
              theorem DividedPowers.DPMorphism.fromGens_coe {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : A →+* B} {S : Set A} (hS : I = Ideal.span S) (hf : Ideal.map f I J) (h : ∀ {n : }, xS, f (hI.dpow n x) = hJ.dpow n (f x)) :
              (fromGens hI hJ hS hf ).toRingHom = f
              theorem DividedPowers.IsDPMorphism.on_span {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : A →+* B} {S : Set A} (hS : I = Ideal.span S) (hS' : sS, f s J) (hdp : ∀ {n : }, aS, f (hI.dpow n a) = hJ.dpow n (f a)) :
              hI.IsDPMorphism hJ f
              theorem DividedPowers.IsDPMorphism.of_comp {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring A] [CommSemiring B] [CommSemiring C] {I : Ideal A} {J : Ideal B} {K : Ideal C} (hI : DividedPowers I) (hJ : DividedPowers J) (hK : DividedPowers K) (f : A →+* B) (g : B →+* C) (heq : J = Ideal.map f I) (hf : hI.IsDPMorphism hJ f) (hh : hI.IsDPMorphism hK (g.comp f)) :
              hJ.IsDPMorphism hK g
              def DividedPowers.DPMorphism.comp {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring A] [CommSemiring B] [CommSemiring C] {I : Ideal A} {J : Ideal B} {K : Ideal C} {hI : DividedPowers I} {hJ : DividedPowers J} {hK : DividedPowers K} (g : hJ.DPMorphism hK) (f : hI.DPMorphism hJ) :

              The composition of two divided power morphisms as a DPMorphism.

              Equations
              Instances For
                @[simp]
                theorem DividedPowers.DPMorphism.comp_toRingHom {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring A] [CommSemiring B] [CommSemiring C] {I : Ideal A} {J : Ideal B} {K : Ideal C} {hI : DividedPowers I} {hJ : DividedPowers J} {hK : DividedPowers K} (g : hJ.DPMorphism hK) (f : hI.DPMorphism hJ) :
                theorem DividedPowers.dpow_comp_from_gens {A : Type u_3} {B : Type u_4} [CommSemiring A] [CommSemiring B] {I : Ideal A} {J : Ideal B} (hI : DividedPowers I) (hJ : DividedPowers J) {f : A →+* B} {S : Set A} (hS : I = Ideal.span S) (hS' : sS, f s J) (hdp : ∀ {n : }, aS, f (hI.dpow n a) = hJ.dpow n (f a)) {n : } (a : A) :
                a IhJ.dpow n (f a) = f (hI.dpow n a)
                theorem DividedPowers.dpow_eq_from_gens {A : Type u_3} [CommSemiring A] {I : Ideal A} (hI hI' : DividedPowers I) {S : Set A} (hS : I = Ideal.span S) (hdp : ∀ {n : }, aS, hI.dpow n a = hI'.dpow n a) :
                hI' = hI

                If two divided power structures on the ideal I agree on a generating set, then they are equal. See N. Roby, Les algèbres à puissances dividées (Corollary to Proposition 3).