Division polynomials of Weierstrass curves #
This file computes the leading terms of certain polynomials associated to division polynomials of
Weierstrass curves defined in Mathlib.AlgebraicGeometry.EllipticCurve.DivisionPolynomial.Basic
.
Mathematical background #
Let $W$ be a Weierstrass curve over a commutative ring $R$. By strong induction,
- $\tilde{\Psi}_n = \tfrac{n}{2}X^{\tfrac{n^2 - 4}{2}} + \dots$ if $n$ is even,
- $\tilde{\Psi}_n = nX^{\tfrac{n^2 - 1}{2}} + \dots$ if $n$ is odd,
- $\Psi_n^{[2]} = n^2X^{n^2 - 1} + \dots$, and
- $\Phi_n = X^{n^2} + \dots$.
In particular, when $R$ is an integral domain of characteristic different from $n$, the univariate polynomials $\tilde{\Psi}_n$, $\Psi_n^{[2]}$, and $\Phi_n$ all have their expected leading terms.
Main statements #
WeierstrassCurve.natDegree_preΨ_le
: the expected degree of $\tilde{\Psi}_n$.WeierstrassCurve.coeff_preΨ
: the expected leading coefficient of $\tilde{\Psi}_n$.WeierstrassCurve.natDegree_preΨ
: the degree of $\tilde{\Psi}_n$ when $n \ne 0$.WeierstrassCurve.leadingCoeff_preΨ
: the leading coefficient of $\tilde{\Psi}_n$ when $n \ne 0$.WeierstrassCurve.natDegree_ΨSq_le
: the expected degree of $\Psi_n^{[2]}$.WeierstrassCurve.coeff_ΨSq
: the expected leading coefficient of $\Psi_n^{[2]}$.WeierstrassCurve.natDegree_ΨSq
: the degree of $\Psi_n^{[2]}$ when $n \ne 0$.WeierstrassCurve.leadingCoeff_ΨSq
: the leading coefficient of $\Psi_n^{[2]}$ when $n \ne 0$.WeierstrassCurve.natDegree_Φ_le
: the expected degree of $\Phi_n$.WeierstrassCurve.coeff_Φ
: the expected leading coefficient of $\Phi_n$.WeierstrassCurve.natDegree_Φ
: the degree of $\Phi_n$ when $n \ne 0$.WeierstrassCurve.leadingCoeff_Φ
: the leading coefficient of $\Phi_n$ when $n \ne 0$.
References #
J Silverman, The Arithmetic of Elliptic Curves
Tags #
elliptic curve, division polynomial, torsion point
theorem
WeierstrassCurve.natDegree_Ψ₂Sq_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₂Sq.natDegree ≤ 3
@[simp]
theorem
WeierstrassCurve.coeff_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₂Sq.coeff 3 = 4
theorem
WeierstrassCurve.coeff_Ψ₂Sq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq.coeff 3 ≠ 0
@[simp]
theorem
WeierstrassCurve.natDegree_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq.natDegree = 3
theorem
WeierstrassCurve.natDegree_Ψ₂Sq_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
0 < W.Ψ₂Sq.natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq.leadingCoeff = 4
theorem
WeierstrassCurve.Ψ₂Sq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq ≠ 0
theorem
WeierstrassCurve.natDegree_Ψ₃_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₃.natDegree ≤ 4
@[simp]
theorem
WeierstrassCurve.coeff_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₃.coeff 4 = 3
theorem
WeierstrassCurve.coeff_Ψ₃_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃.coeff 4 ≠ 0
@[simp]
theorem
WeierstrassCurve.natDegree_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃.natDegree = 4
theorem
WeierstrassCurve.natDegree_Ψ₃_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
0 < W.Ψ₃.natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃.leadingCoeff = 3
theorem
WeierstrassCurve.Ψ₃_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃ ≠ 0
theorem
WeierstrassCurve.natDegree_preΨ₄_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.preΨ₄.natDegree ≤ 6
@[simp]
theorem
WeierstrassCurve.coeff_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.preΨ₄.coeff 6 = 2
theorem
WeierstrassCurve.coeff_preΨ₄_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄.coeff 6 ≠ 0
@[simp]
theorem
WeierstrassCurve.natDegree_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄.natDegree = 6
theorem
WeierstrassCurve.natDegree_preΨ₄_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
0 < W.preΨ₄.natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄.leadingCoeff = 2
theorem
WeierstrassCurve.preΨ₄_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄ ≠ 0
theorem
WeierstrassCurve.natDegree_preΨ'_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℕ}
(hn : 2 < n)
(h : ↑n ≠ 0)
:
0 < (W.preΨ' n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ'
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℕ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.preΨ'_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℕ}
(h : ↑n ≠ 0)
:
W.preΨ' n ≠ 0
theorem
WeierstrassCurve.natDegree_preΨ_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℤ}
(hn : 2 < n.natAbs)
(h : ↑n ≠ 0)
:
0 < (W.preΨ n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.preΨ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℤ}
(h : ↑n ≠ 0)
:
W.preΨ n ≠ 0
theorem
WeierstrassCurve.natDegree_ΨSq_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.coeff_ΨSq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.natDegree_ΨSq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.natDegree_ΨSq_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(hn : 1 < n.natAbs)
(h : ↑n ≠ 0)
:
0 < (W.ΨSq n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_ΨSq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.ΨSq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
W.ΨSq n ≠ 0
theorem
WeierstrassCurve.natDegree_Φ_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.coeff_Φ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.natDegree_Φ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
theorem
WeierstrassCurve.natDegree_Φ_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℤ}
(hn : n ≠ 0)
:
0 < (W.Φ n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Φ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
(W.Φ n).leadingCoeff = 1
theorem
WeierstrassCurve.Φ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
W.Φ n ≠ 0