Division polynomials of Weierstrass curves #
This file computes the leading terms of certain polynomials associated to division polynomials of
Weierstrass curves defined in
Mathlib/AlgebraicGeometry/EllipticCurve/DivisionPolynomial/Basic.lean.
Mathematical background #
Let W be a Weierstrass curve over a commutative ring R. By strong induction,
preΨₙhas leading coefficientn / 2and degree(n² - 4) / 2ifnis even,preΨₙhas leading coefficientnand degree(n² - 1) / 2ifnis odd,ΨSqₙhas leading coefficientn²and degreen² - 1, andΦₙhas leading coefficient1and degreen².
In particular, when R is an integral domain of characteristic different from n, the univariate
polynomials preΨₙ, ΨSqₙ, and Φₙ all have their expected leading terms.
Main statements #
WeierstrassCurve.natDegree_preΨ_le: the degree bounddofpreΨₙ.WeierstrassCurve.coeff_preΨ: thed-th coefficient ofpreΨₙ.WeierstrassCurve.natDegree_preΨ: the degree ofpreΨₙwhenn ≠ 0.WeierstrassCurve.leadingCoeff_preΨ: the leading coefficient ofpreΨₙwhenn ≠ 0.WeierstrassCurve.natDegree_ΨSq_le: the degree bounddofΨSqₙ.WeierstrassCurve.coeff_ΨSq: thed-th coefficient ofΨSqₙ.WeierstrassCurve.natDegree_ΨSq: the degree ofΨSqₙwhenn ≠ 0.WeierstrassCurve.leadingCoeff_ΨSq: the leading coefficient ofΨSqₙwhenn ≠ 0.WeierstrassCurve.natDegree_Φ_le: the degree bounddofΦₙ.WeierstrassCurve.coeff_Φ: thed-th coefficient ofΦₙ.WeierstrassCurve.natDegree_Φ: the degree ofΦₙwhenn ≠ 0.WeierstrassCurve.leadingCoeff_Φ: the leading coefficient ofΦₙwhenn ≠ 0.
References #
J Silverman, The Arithmetic of Elliptic Curves
Tags #
elliptic curve, division polynomial, torsion point
@[simp]
theorem
WeierstrassCurve.coeff_Ψ₂Sq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.natDegree_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
theorem
WeierstrassCurve.natDegree_Ψ₂Sq_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
theorem
WeierstrassCurve.Ψ₂Sq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.coeff_Ψ₃_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.natDegree_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
theorem
WeierstrassCurve.natDegree_Ψ₃_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
theorem
WeierstrassCurve.Ψ₃_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.coeff_preΨ₄_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.natDegree_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
theorem
WeierstrassCurve.natDegree_preΨ₄_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
theorem
WeierstrassCurve.preΨ₄_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ'
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℕ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.preΨ'_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℕ}
(h : ↑n ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.preΨ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.coeff_ΨSq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.natDegree_ΨSq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.natDegree_ΨSq_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(hn : 1 < n.natAbs)
(h : ↑n ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_ΨSq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.ΨSq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.coeff_Φ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.natDegree_Φ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
theorem
WeierstrassCurve.natDegree_Φ_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℤ}
(hn : n ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Φ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
theorem
WeierstrassCurve.Φ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
: