Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.DivisionPolynomial.Degree

Division polynomials of Weierstrass curves #

This file computes the leading terms of certain polynomials associated to division polynomials of Weierstrass curves defined in Mathlib.AlgebraicGeometry.EllipticCurve.DivisionPolynomial.Basic.

Mathematical background #

Let $W$ be a Weierstrass curve over a commutative ring $R$. By strong induction,

In particular, when $R$ is an integral domain of characteristic different from $n$, the univariate polynomials $\tilde{\Psi}_n$, $\Psi_n^{[2]}$, and $\Phi_n$ all have their expected leading terms.

Main statements #

References #

J Silverman, The Arithmetic of Elliptic Curves

Tags #

elliptic curve, division polynomial, torsion point

theorem WeierstrassCurve.natDegree_Ψ₂Sq_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
W.Ψ₂Sq.natDegree 3
@[simp]
theorem WeierstrassCurve.coeff_Ψ₂Sq {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
W.Ψ₂Sq.coeff 3 = 4
theorem WeierstrassCurve.coeff_Ψ₂Sq_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 4 0) :
W.Ψ₂Sq.coeff 3 0
@[simp]
theorem WeierstrassCurve.natDegree_Ψ₂Sq {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 4 0) :
W.Ψ₂Sq.natDegree = 3
theorem WeierstrassCurve.natDegree_Ψ₂Sq_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 4 0) :
0 < W.Ψ₂Sq.natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_Ψ₂Sq {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 4 0) :
W.Ψ₂Sq.leadingCoeff = 4
theorem WeierstrassCurve.Ψ₂Sq_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 4 0) :
W.Ψ₂Sq 0
theorem WeierstrassCurve.natDegree_Ψ₃_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
W.Ψ₃.natDegree 4
@[simp]
theorem WeierstrassCurve.coeff_Ψ₃ {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
W.Ψ₃.coeff 4 = 3
theorem WeierstrassCurve.coeff_Ψ₃_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 3 0) :
W.Ψ₃.coeff 4 0
@[simp]
theorem WeierstrassCurve.natDegree_Ψ₃ {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 3 0) :
W.Ψ₃.natDegree = 4
theorem WeierstrassCurve.natDegree_Ψ₃_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 3 0) :
0 < W.Ψ₃.natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_Ψ₃ {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 3 0) :
W.Ψ₃.leadingCoeff = 3
theorem WeierstrassCurve.Ψ₃_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 3 0) :
W.Ψ₃ 0
theorem WeierstrassCurve.natDegree_preΨ₄_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
W.preΨ₄.natDegree 6
@[simp]
theorem WeierstrassCurve.coeff_preΨ₄ {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
W.preΨ₄.coeff 6 = 2
theorem WeierstrassCurve.coeff_preΨ₄_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 2 0) :
W.preΨ₄.coeff 6 0
@[simp]
theorem WeierstrassCurve.natDegree_preΨ₄ {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 2 0) :
W.preΨ₄.natDegree = 6
theorem WeierstrassCurve.natDegree_preΨ₄_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 2 0) :
0 < W.preΨ₄.natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_preΨ₄ {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 2 0) :
W.preΨ₄.leadingCoeff = 2
theorem WeierstrassCurve.preΨ₄_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) (h : 2 0) :
W.preΨ₄ 0
theorem WeierstrassCurve.natDegree_preΨ'_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W.preΨ' n).natDegree (n ^ 2 - if Even n then 4 else 1) / 2
@[simp]
theorem WeierstrassCurve.coeff_preΨ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W.preΨ' n).coeff ((n ^ 2 - if Even n then 4 else 1) / 2) = (if Even n then n / 2 else n)
theorem WeierstrassCurve.coeff_preΨ'_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (h : n 0) :
(W.preΨ' n).coeff ((n ^ 2 - if Even n then 4 else 1) / 2) 0
@[simp]
theorem WeierstrassCurve.natDegree_preΨ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (h : n 0) :
(W.preΨ' n).natDegree = (n ^ 2 - if Even n then 4 else 1) / 2
theorem WeierstrassCurve.natDegree_preΨ'_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (hn : 2 < n) (h : n 0) :
0 < (W.preΨ' n).natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_preΨ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (h : n 0) :
(W.preΨ' n).leadingCoeff = (if Even n then n / 2 else n)
theorem WeierstrassCurve.preΨ'_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] {n : } (h : n 0) :
W.preΨ' n 0
theorem WeierstrassCurve.natDegree_preΨ_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W.preΨ n).natDegree (n.natAbs ^ 2 - if Even n then 4 else 1) / 2
@[simp]
theorem WeierstrassCurve.coeff_preΨ {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W.preΨ n).coeff ((n.natAbs ^ 2 - if Even n then 4 else 1) / 2) = (if Even n then n / 2 else n)
theorem WeierstrassCurve.coeff_preΨ_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (h : n 0) :
(W.preΨ n).coeff ((n.natAbs ^ 2 - if Even n then 4 else 1) / 2) 0
@[simp]
theorem WeierstrassCurve.natDegree_preΨ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (h : n 0) :
(W.preΨ n).natDegree = (n.natAbs ^ 2 - if Even n then 4 else 1) / 2
theorem WeierstrassCurve.natDegree_preΨ_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (hn : 2 < n.natAbs) (h : n 0) :
0 < (W.preΨ n).natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_preΨ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {n : } (h : n 0) :
(W.preΨ n).leadingCoeff = (if Even n then n / 2 else n)
theorem WeierstrassCurve.preΨ_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] {n : } (h : n 0) :
W.preΨ n 0
theorem WeierstrassCurve.natDegree_ΨSq_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W.ΨSq n).natDegree n.natAbs ^ 2 - 1
@[simp]
theorem WeierstrassCurve.coeff_ΨSq {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W.ΨSq n).coeff (n.natAbs ^ 2 - 1) = n ^ 2
theorem WeierstrassCurve.coeff_ΨSq_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [NoZeroDivisors R] {n : } (h : n 0) :
(W.ΨSq n).coeff (n.natAbs ^ 2 - 1) 0
@[simp]
theorem WeierstrassCurve.natDegree_ΨSq {R : Type u} [CommRing R] (W : WeierstrassCurve R) [NoZeroDivisors R] {n : } (h : n 0) :
(W.ΨSq n).natDegree = n.natAbs ^ 2 - 1
theorem WeierstrassCurve.natDegree_ΨSq_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) [NoZeroDivisors R] {n : } (hn : 1 < n.natAbs) (h : n 0) :
0 < (W.ΨSq n).natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_ΨSq {R : Type u} [CommRing R] (W : WeierstrassCurve R) [NoZeroDivisors R] {n : } (h : n 0) :
(W.ΨSq n).leadingCoeff = n ^ 2
theorem WeierstrassCurve.ΨSq_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [NoZeroDivisors R] {n : } (h : n 0) :
W.ΨSq n 0
theorem WeierstrassCurve.natDegree_Φ_le {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W n).natDegree n.natAbs ^ 2
@[simp]
theorem WeierstrassCurve.coeff_Φ {R : Type u} [CommRing R] (W : WeierstrassCurve R) (n : ) :
(W n).coeff (n.natAbs ^ 2) = 1
theorem WeierstrassCurve.coeff_Φ_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] (n : ) :
(W n).coeff (n.natAbs ^ 2) 0
@[simp]
theorem WeierstrassCurve.natDegree_Φ {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] (n : ) :
(W n).natDegree = n.natAbs ^ 2
theorem WeierstrassCurve.natDegree_Φ_pos {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] {n : } (hn : n 0) :
0 < (W n).natDegree
@[simp]
theorem WeierstrassCurve.leadingCoeff_Φ {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] (n : ) :
(W n).leadingCoeff = 1
theorem WeierstrassCurve.Φ_ne_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [Nontrivial R] (n : ) :
W n 0