Restriction to submodules and restriction of scalars for perfect pairings. #
We provide API for restricting perfect pairings to submodules and for restricting their scalars.
Main definitions #
PerfectPairing.restrict
: restriction of a perfect pairing to submodules.PerfectPairing.restrictScalars
: restriction of scalars for a perfect pairing taking values in a subring.PerfectPairing.restrictScalarsField
: simultaneously restrict both the domains and scalars of a perfect pairing with coefficients in a field.
def
PerfectPairing.restrict
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(p : PerfectPairing R M N)
{M' : Type u_4}
{N' : Type u_5}
[AddCommGroup M']
[Module R M']
[AddCommGroup N']
[Module R N']
(i : M' →ₗ[R] M)
(j : N' →ₗ[R] N)
(hi : Function.Injective ⇑i)
(hj : Function.Injective ⇑j)
(hij : p.IsPerfectCompl (LinearMap.range i) (LinearMap.range j))
:
PerfectPairing R M' N'
The restriction of a perfect pairing to submodules (expressed as injections to provide definitional control).
Equations
- p.restrict i j hi hj hij = { toLin := p.toLin.compl₁₂ i j, bijectiveLeft := ⋯, bijectiveRight := ⋯ }
Instances For
@[simp]
theorem
PerfectPairing.restrict_toLin
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(p : PerfectPairing R M N)
{M' : Type u_4}
{N' : Type u_5}
[AddCommGroup M']
[Module R M']
[AddCommGroup N']
[Module R N']
(i : M' →ₗ[R] M)
(j : N' →ₗ[R] N)
(hi : Function.Injective ⇑i)
(hj : Function.Injective ⇑j)
(hij : p.IsPerfectCompl (LinearMap.range i) (LinearMap.range j))
:
(p.restrict i j hi hj hij).toLin = p.toLin.compl₁₂ i j
@[simp]
theorem
PerfectPairing.restrict_apply_apply
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(p : PerfectPairing R M N)
{M' : Type u_4}
{N' : Type u_5}
[AddCommGroup M']
[Module R M']
[AddCommGroup N']
[Module R N']
(i : M' →ₗ[R] M)
(j : N' →ₗ[R] N)
(hi : Function.Injective ⇑i)
(hj : Function.Injective ⇑j)
(hij : p.IsPerfectCompl (LinearMap.range i) (LinearMap.range j))
(x : M')
(y : N')
:
((p.restrict i j hi hj hij) x) y = (p (i x)) (j y)
def
PerfectPairing.restrictScalars
{R : Type u_1}
{M : Type u_2}
{N : Type u_3}
[CommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(p : PerfectPairing R M N)
{S : Type u_4}
{M' : Type u_5}
{N' : Type u_6}
[CommRing S]
[Algebra S R]
[Module S M]
[Module S N]
[IsScalarTower S R M]
[IsScalarTower S R N]
[NoZeroSMulDivisors S R]
[Nontrivial R]
[AddCommGroup M']
[Module S M']
[AddCommGroup N']
[Module S N']
(i : M' →ₗ[S] M)
(j : N' →ₗ[S] N)
(hi : Function.Injective ⇑i)
(hj : Function.Injective ⇑j)
(hM : Submodule.span R ↑(LinearMap.range i) = ⊤)
(hN : Submodule.span R ↑(LinearMap.range j) = ⊤)
(h₁ : ∀ (g : Module.Dual S N'), ∃ (m : M'), ↑S (p.toDualLeft (i m)) ∘ₗ j = Algebra.linearMap S R ∘ₗ g)
(h₂ : ∀ (g : Module.Dual S M'), ∃ (n : N'), ↑S (p.toDualRight (j n)) ∘ₗ i = Algebra.linearMap S R ∘ₗ g)
(hp : ∀ (m : M') (n : N'), (p (i m)) (j n) ∈ (algebraMap S R).range)
:
PerfectPairing S M' N'
Restriction of scalars for a perfect pairing taking values in a subring.
Equations
- p.restrictScalars i j hi hj hM hN h₁ h₂ hp = { toLin := PerfectPairing.restrictScalarsAux✝ p i j hp, bijectiveLeft := ⋯, bijectiveRight := ⋯ }
Instances For
theorem
PerfectPairing.exists_basis_basis_of_span_eq_top_of_mem_algebraMap
{K : Type u_1}
{L : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Field K]
[Field L]
[Algebra K L]
[AddCommGroup M]
[AddCommGroup N]
[Module L M]
[Module L N]
[Module K M]
[Module K N]
[IsScalarTower K L M]
(p : PerfectPairing L M N)
(M' : Submodule K M)
(N' : Submodule K N)
(hM : Submodule.span L ↑M' = ⊤)
(hN : Submodule.span L ↑N' = ⊤)
(hp : ∀ x ∈ M', ∀ y ∈ N', (p x) y ∈ (algebraMap K L).range)
:
If a perfect pairing over a field L
takes values in a subfield K
along two K
-subspaces
whose L
span is full, then these subspaces induce a K
-structure in the sense of
Algebra I, Bourbaki : Chapter II, §8.1 Definition 1.
def
PerfectPairing.restrictScalarsField
{K : Type u_1}
{L : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Field K]
[Field L]
[Algebra K L]
[AddCommGroup M]
[AddCommGroup N]
[Module L M]
[Module L N]
[Module K M]
[Module K N]
[IsScalarTower K L M]
(p : PerfectPairing L M N)
{M' : Type u_5}
{N' : Type u_6}
[AddCommGroup M']
[AddCommGroup N']
[Module K M']
[Module K N']
[IsScalarTower K L N]
(i : M' →ₗ[K] M)
(j : N' →ₗ[K] N)
(hi : Function.Injective ⇑i)
(hj : Function.Injective ⇑j)
(hij : p.IsPerfectCompl (Submodule.span L ↑(LinearMap.range i)) (Submodule.span L ↑(LinearMap.range j)))
(hp : ∀ (m : M') (n : N'), (p (i m)) (j n) ∈ (algebraMap K L).range)
:
PerfectPairing K M' N'
Simultaneously restrict both the domains and scalars of a perfect pairing with coefficients in a field.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
PerfectPairing.restrictScalarsField_apply_apply
{K : Type u_1}
{L : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Field K]
[Field L]
[Algebra K L]
[AddCommGroup M]
[AddCommGroup N]
[Module L M]
[Module L N]
[Module K M]
[Module K N]
[IsScalarTower K L M]
(p : PerfectPairing L M N)
{M' : Type u_5}
{N' : Type u_6}
[AddCommGroup M']
[AddCommGroup N']
[Module K M']
[Module K N']
[IsScalarTower K L N]
(i : M' →ₗ[K] M)
(j : N' →ₗ[K] N)
(hi : Function.Injective ⇑i)
(hj : Function.Injective ⇑j)
(hij : p.IsPerfectCompl (Submodule.span L ↑(LinearMap.range i)) (Submodule.span L ↑(LinearMap.range j)))
(hp : ∀ (m : M') (n : N'), (p (i m)) (j n) ∈ (algebraMap K L).range)
(x : M')
(y : N')
:
(algebraMap K L) (((p.restrictScalarsField i j hi hj hij hp) x) y) = (p (i x)) (j y)