Matrices and base change #
This file is a home for results about base change for matrices.
Main results: #
Matrix.mem_subfield_of_mul_eq_one_of_mem_subfield_right
: if an invertible matrix overL
takes values in subfieldK ⊆ L
, then so does its (right) inverse.Matrix.mem_subfield_of_mul_eq_one_of_mem_subfield_left
: if an invertible matrix overL
takes values in subfieldK ⊆ L
, then so does its (left) inverse.
theorem
Matrix.mem_subfield_of_mul_eq_one_of_mem_subfield_right
{m : Type u_1}
{n : Type u_2}
{L : Type u_3}
[Fintype m]
[Fintype n]
[DecidableEq m]
[Field L]
(e : m ≃ n)
(K : Subfield L)
{A : Matrix m n L}
{B : Matrix n m L}
(hAB : A * B = 1)
(h_mem : ∀ (i : m) (j : n), A i j ∈ K)
(i : n)
(j : m)
:
B i j ∈ K
theorem
Matrix.mem_subfield_of_mul_eq_one_of_mem_subfield_left
{m : Type u_1}
{n : Type u_2}
{L : Type u_3}
[Fintype m]
[Fintype n]
[DecidableEq m]
[Field L]
(e : m ≃ n)
(K : Subfield L)
{A : Matrix m n L}
{B : Matrix n m L}
(hAB : A * B = 1)
(h_mem : ∀ (i : n) (j : m), B i j ∈ K)
(i : m)
(j : n)
:
A i j ∈ K