Documentation

Mathlib.Algebra.Field.Subfield.Defs

Subfields #

Let K be a division ring, for example a field. This file defines the "bundled" subfield type Subfield K, a type whose terms correspond to subfields of K. Note we do not require the "subfields" to be commutative, so they are really sub-division rings / skew fields. This is the preferred way to talk about subfields in mathlib. Unbundled subfields (s : Set K and IsSubfield s) are not in this file, and they will ultimately be deprecated.

We prove that subfields are a complete lattice, and that you can map (pushforward) and comap (pull back) them along ring homomorphisms.

We define the closure construction from Set K to Subfield K, sending a subset of K to the subfield it generates, and prove that it is a Galois insertion.

Main definitions #

Notation used here:

(K : Type u) [DivisionRing K] (L : Type u) [DivisionRing L] (f g : K →+* L) (A : Subfield K) (B : Subfield L) (s : Set K)

Implementation notes #

A subfield is implemented as a subring which is closed under ⁻¹.

Lattice inclusion (e.g. and ) is used rather than set notation ( and ), although is defined as membership of a subfield's underlying set.

Tags #

subfield, subfields

class SubfieldClass (S : Type u_1) (K : Type u_2) [DivisionRing K] [SetLike S K] extends SubringClass S K, InvMemClass S K :

SubfieldClass S K states S is a type of subsets s ⊆ K closed under field operations.

Instances
    @[instance 100]
    instance SubfieldClass.toSubgroupClass {K : Type u} [DivisionRing K] (S : Type u_1) [SetLike S K] [h : SubfieldClass S K] :

    A subfield contains 1, products and inverses.

    Be assured that we're not actually proving that subfields are subgroups: SubgroupClass is really an abbreviation of SubgroupWithOrWithoutZeroClass.

    theorem SubfieldClass.nnratCast_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (q : ℚ≥0) :
    q s
    theorem SubfieldClass.ratCast_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (q : ) :
    q s
    instance SubfieldClass.instNNRatCast {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) :
    Equations
    instance SubfieldClass.instRatCast {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) :
    RatCast s
    Equations
    @[simp]
    theorem SubfieldClass.coe_nnratCast {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (q : ℚ≥0) :
    q = q
    @[simp]
    theorem SubfieldClass.coe_ratCast {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (x : ) :
    x = x
    theorem SubfieldClass.nnqsmul_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] {x : K} (s : S) (q : ℚ≥0) (hx : x s) :
    q x s
    theorem SubfieldClass.qsmul_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] {x : K} (s : S) (q : ) (hx : x s) :
    q x s
    @[deprecated SubfieldClass.coe_ratCast]
    theorem SubfieldClass.coe_rat_cast {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (x : ) :
    x = x

    Alias of SubfieldClass.coe_ratCast.

    @[deprecated SubfieldClass.ratCast_mem]
    theorem SubfieldClass.coe_rat_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (q : ) :
    q s

    Alias of SubfieldClass.ratCast_mem.

    @[deprecated SubfieldClass.qsmul_mem]
    theorem SubfieldClass.rat_smul_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] {x : K} (s : S) (q : ) (hx : x s) :
    q x s

    Alias of SubfieldClass.qsmul_mem.

    theorem SubfieldClass.ofScientific_mem {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) {b : Bool} {n m : } :
    instance SubfieldClass.instSMulNNRat {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) :
    Equations
    instance SubfieldClass.instSMulRat {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) :
    SMul s
    Equations
    @[simp]
    theorem SubfieldClass.coe_nnqsmul {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (q : ℚ≥0) (x : s) :
    (q x) = q x
    @[simp]
    theorem SubfieldClass.coe_qsmul {K : Type u} [DivisionRing K] {S : Type u_1} [SetLike S K] [h : SubfieldClass S K] (s : S) (q : ) (x : s) :
    (q x) = q x
    @[instance 75]
    instance SubfieldClass.toDivisionRing {K : Type u} [DivisionRing K] (S : Type u_1) [SetLike S K] [h : SubfieldClass S K] (s : S) :

    A subfield inherits a division ring structure

    Equations
    @[instance 75]
    instance SubfieldClass.toField (S : Type u_1) {K : Type u_2} [Field K] [SetLike S K] [SubfieldClass S K] (s : S) :
    Field s

    A subfield of a field inherits a field structure

    Equations
    structure Subfield (K : Type u) [DivisionRing K] extends Subring K :

    Subfield R is the type of subfields of R. A subfield of R is a subset s that is a multiplicative submonoid and an additive subgroup. Note in particular that it shares the same 0 and 1 as R.

    Stacks Tag 09FD (second part)

    Instances For

      The underlying AddSubgroup of a subfield.

      Equations
      • s.toAddSubgroup = { toAddSubmonoid := s.toAddSubgroup.toAddSubmonoid, neg_mem' := }
      Instances For
        Equations
        • Subfield.instSetLike = { coe := fun (s : Subfield K) => s.carrier, coe_injective' := }
        theorem Subfield.mem_carrier {K : Type u} [DivisionRing K] {s : Subfield K} {x : K} :
        x s.carrier x s
        @[simp]
        theorem Subfield.mem_mk {K : Type u} [DivisionRing K] {S : Subring K} {x : K} (h : xS.carrier, x⁻¹ S.carrier) :
        x { toSubring := S, inv_mem' := h } x S
        @[simp]
        theorem Subfield.coe_set_mk {K : Type u} [DivisionRing K] (S : Subring K) (h : xS.carrier, x⁻¹ S.carrier) :
        { toSubring := S, inv_mem' := h } = S
        @[simp]
        theorem Subfield.mk_le_mk {K : Type u} [DivisionRing K] {S S' : Subring K} (h : xS.carrier, x⁻¹ S.carrier) (h' : xS'.carrier, x⁻¹ S'.carrier) :
        { toSubring := S, inv_mem' := h } { toSubring := S', inv_mem' := h' } S S'
        theorem Subfield.ext {K : Type u} [DivisionRing K] {S T : Subfield K} (h : ∀ (x : K), x S x T) :
        S = T

        Two subfields are equal if they have the same elements.

        def Subfield.copy {K : Type u} [DivisionRing K] (S : Subfield K) (s : Set K) (hs : s = S) :

        Copy of a subfield with a new carrier equal to the old one. Useful to fix definitional equalities.

        Equations
        • S.copy s hs = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , neg_mem' := , inv_mem' := }
        Instances For
          @[simp]
          theorem Subfield.coe_copy {K : Type u} [DivisionRing K] (S : Subfield K) (s : Set K) (hs : s = S) :
          (S.copy s hs) = s
          theorem Subfield.copy_eq {K : Type u} [DivisionRing K] (S : Subfield K) (s : Set K) (hs : s = S) :
          S.copy s hs = S
          @[simp]
          theorem Subfield.coe_toSubring {K : Type u} [DivisionRing K] (s : Subfield K) :
          s.toSubring = s
          @[simp]
          theorem Subfield.mem_toSubring {K : Type u} [DivisionRing K] (s : Subfield K) (x : K) :
          x s.toSubring x s
          def Subring.toSubfield {K : Type u} [DivisionRing K] (s : Subring K) (hinv : xs, x⁻¹ s) :

          A Subring containing inverses is a Subfield.

          Equations
          • s.toSubfield hinv = { toSubring := s, inv_mem' := hinv }
          Instances For
            theorem Subfield.one_mem {K : Type u} [DivisionRing K] (s : Subfield K) :
            1 s

            A subfield contains the field's 1.

            theorem Subfield.zero_mem {K : Type u} [DivisionRing K] (s : Subfield K) :
            0 s

            A subfield contains the field's 0.

            theorem Subfield.mul_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x y : K} :
            x sy sx * y s

            A subfield is closed under multiplication.

            theorem Subfield.add_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x y : K} :
            x sy sx + y s

            A subfield is closed under addition.

            theorem Subfield.neg_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x : K} :
            x s-x s

            A subfield is closed under negation.

            theorem Subfield.sub_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x y : K} :
            x sy sx - y s

            A subfield is closed under subtraction.

            theorem Subfield.inv_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x : K} :
            x sx⁻¹ s

            A subfield is closed under inverses.

            theorem Subfield.div_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x y : K} :
            x sy sx / y s

            A subfield is closed under division.

            theorem Subfield.pow_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x : K} (hx : x s) (n : ) :
            x ^ n s
            theorem Subfield.zsmul_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x : K} (hx : x s) (n : ) :
            n x s
            theorem Subfield.intCast_mem {K : Type u} [DivisionRing K] (s : Subfield K) (n : ) :
            n s
            @[deprecated intCast_mem]
            theorem Subfield.coe_int_mem {R : Type u} {S : Type v} [Ring R] [SetLike S R] [hSR : SubringClass S R] (s : S) (n : ) :
            n s

            Alias of intCast_mem.

            theorem Subfield.zpow_mem {K : Type u} [DivisionRing K] (s : Subfield K) {x : K} (hx : x s) (n : ) :
            x ^ n s
            instance Subfield.instRingSubtypeMem {K : Type u} [DivisionRing K] (s : Subfield K) :
            Ring s
            Equations
            • s.instRingSubtypeMem = s.toRing
            instance Subfield.instDivSubtypeMem {K : Type u} [DivisionRing K] (s : Subfield K) :
            Div s
            Equations
            • s.instDivSubtypeMem = { div := fun (x y : s) => x / y, }
            instance Subfield.instInvSubtypeMem {K : Type u} [DivisionRing K] (s : Subfield K) :
            Inv s
            Equations
            • s.instInvSubtypeMem = { inv := fun (x : s) => (↑x)⁻¹, }
            instance Subfield.instPowSubtypeMemInt {K : Type u} [DivisionRing K] (s : Subfield K) :
            Pow s
            Equations
            • s.instPowSubtypeMemInt = { pow := fun (x : s) (z : ) => x ^ z, }
            Equations
            instance Subfield.toField {K : Type u_1} [Field K] (s : Subfield K) :
            Field s

            A subfield inherits a field structure

            Equations
            @[simp]
            theorem Subfield.coe_add {K : Type u} [DivisionRing K] (s : Subfield K) (x y : s) :
            (x + y) = x + y
            @[simp]
            theorem Subfield.coe_sub {K : Type u} [DivisionRing K] (s : Subfield K) (x y : s) :
            (x - y) = x - y
            @[simp]
            theorem Subfield.coe_neg {K : Type u} [DivisionRing K] (s : Subfield K) (x : s) :
            (-x) = -x
            @[simp]
            theorem Subfield.coe_mul {K : Type u} [DivisionRing K] (s : Subfield K) (x y : s) :
            (x * y) = x * y
            @[simp]
            theorem Subfield.coe_div {K : Type u} [DivisionRing K] (s : Subfield K) (x y : s) :
            (x / y) = x / y
            @[simp]
            theorem Subfield.coe_inv {K : Type u} [DivisionRing K] (s : Subfield K) (x : s) :
            x⁻¹ = (↑x)⁻¹
            @[simp]
            theorem Subfield.coe_zero {K : Type u} [DivisionRing K] (s : Subfield K) :
            0 = 0
            @[simp]
            theorem Subfield.coe_one {K : Type u} [DivisionRing K] (s : Subfield K) :
            1 = 1
            def Subfield.subtype {K : Type u} [DivisionRing K] (s : Subfield K) :
            s →+* K

            The embedding from a subfield of the field K to K.

            Equations
            • s.subtype = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
            Instances For
              @[simp]
              theorem Subfield.coe_subtype {K : Type u} [DivisionRing K] (s : Subfield K) :
              s.subtype = Subtype.val
              theorem Subfield.toSubring_subtype_eq_subtype (K : Type u) [DivisionRing K] (S : Subfield K) :
              S.subtype = S.subtype

              Partial order #

              theorem Subfield.mem_toSubmonoid {K : Type u} [DivisionRing K] {s : Subfield K} {x : K} :
              x s.toSubmonoid x s
              @[simp]
              theorem Subfield.coe_toSubmonoid {K : Type u} [DivisionRing K] (s : Subfield K) :
              s.toSubmonoid = s
              @[simp]
              theorem Subfield.mem_toAddSubgroup {K : Type u} [DivisionRing K] {s : Subfield K} {x : K} :
              x s.toAddSubgroup x s
              @[simp]
              theorem Subfield.coe_toAddSubgroup {K : Type u} [DivisionRing K] (s : Subfield K) :
              s.toAddSubgroup = s