Documentation

Mathlib.Algebra.Ring.Subsemiring.Defs

Bundled subsemirings #

We define bundled subsemirings and some standard constructions: subtype and inclusion ring homomorphisms.

AddSubmonoidWithOneClass S R says S is a type of subsets s ≤ R that contain 0, 1, and are closed under (+)

Instances
    theorem natCast_mem {S : Type u_1} {R : Type u_2} [AddMonoidWithOne R] [SetLike S R] (s : S) [AddSubmonoidWithOneClass S R] (n : ) :
    n s
    @[deprecated natCast_mem]
    theorem coe_nat_mem {S : Type u_1} {R : Type u_2} [AddMonoidWithOne R] [SetLike S R] (s : S) [AddSubmonoidWithOneClass S R] (n : ) :
    n s

    Alias of natCast_mem.

    theorem ofNat_mem {S : Type u_1} {R : Type u_2} [AddMonoidWithOne R] [SetLike S R] [AddSubmonoidWithOneClass S R] (s : S) (n : ) [n.AtLeastTwo] :
    class SubsemiringClass (S : Type u_1) (R : outParam (Type u)) [NonAssocSemiring R] [SetLike S R] extends SubmonoidClass S R, AddSubmonoidClass S R :

    SubsemiringClass S R states that S is a type of subsets s ⊆ R that are both a multiplicative and an additive submonoid.

    Instances
      @[instance 100]
      @[instance 75]
      instance SubsemiringClass.toNonAssocSemiring {R : Type u} {S : Type v} [NonAssocSemiring R] [SetLike S R] [hSR : SubsemiringClass S R] (s : S) :

      A subsemiring of a NonAssocSemiring inherits a NonAssocSemiring structure

      Equations
      instance SubsemiringClass.nontrivial {R : Type u} {S : Type v} [NonAssocSemiring R] [SetLike S R] [hSR : SubsemiringClass S R] (s : S) [Nontrivial R] :
      def SubsemiringClass.subtype {R : Type u} {S : Type v} [NonAssocSemiring R] [SetLike S R] [hSR : SubsemiringClass S R] (s : S) :
      s →+* R

      The natural ring hom from a subsemiring of semiring R to R.

      Equations
      Instances For
        @[simp]
        theorem SubsemiringClass.coe_subtype {R : Type u} {S : Type v} [NonAssocSemiring R] [SetLike S R] [hSR : SubsemiringClass S R] (s : S) :
        (SubsemiringClass.subtype s) = Subtype.val
        @[instance 75]
        instance SubsemiringClass.toSemiring {S : Type v} (s : S) {R : Type u_1} [Semiring R] [SetLike S R] [SubsemiringClass S R] :

        A subsemiring of a Semiring is a Semiring.

        Equations
        @[simp]
        theorem SubsemiringClass.coe_pow {S : Type v} (s : S) {R : Type u_1} [Semiring R] [SetLike S R] [SubsemiringClass S R] (x : s) (n : ) :
        (x ^ n) = x ^ n
        instance SubsemiringClass.toCommSemiring {S : Type v} (s : S) {R : Type u_1} [CommSemiring R] [SetLike S R] [SubsemiringClass S R] :

        A subsemiring of a CommSemiring is a CommSemiring.

        Equations
        structure Subsemiring (R : Type u) [NonAssocSemiring R] extends Submonoid R, AddSubmonoid R :

        A subsemiring of a semiring R is a subset s that is both a multiplicative and an additive submonoid.

        Instances For
          Equations
          • Subsemiring.instSetLike = { coe := fun (s : Subsemiring R) => s.carrier, coe_injective' := }
          @[simp]
          theorem Subsemiring.mem_toSubmonoid {R : Type u} [NonAssocSemiring R] {s : Subsemiring R} {x : R} :
          x s.toSubmonoid x s
          theorem Subsemiring.mem_carrier {R : Type u} [NonAssocSemiring R] {s : Subsemiring R} {x : R} :
          x s.carrier x s
          theorem Subsemiring.ext {R : Type u} [NonAssocSemiring R] {S T : Subsemiring R} (h : ∀ (x : R), x S x T) :
          S = T

          Two subsemirings are equal if they have the same elements.

          def Subsemiring.copy {R : Type u} [NonAssocSemiring R] (S : Subsemiring R) (s : Set R) (hs : s = S) :

          Copy of a subsemiring with a new carrier equal to the old one. Useful to fix definitional equalities.

          Equations
          • S.copy s hs = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
          Instances For
            @[simp]
            theorem Subsemiring.coe_copy {R : Type u} [NonAssocSemiring R] (S : Subsemiring R) (s : Set R) (hs : s = S) :
            (S.copy s hs) = s
            @[simp]
            theorem Subsemiring.copy_toSubmonoid {R : Type u} [NonAssocSemiring R] (S : Subsemiring R) (s : Set R) (hs : s = S) :
            (S.copy s hs).toSubmonoid = { carrier := s, mul_mem' := , one_mem' := }
            theorem Subsemiring.copy_eq {R : Type u} [NonAssocSemiring R] (S : Subsemiring R) (s : Set R) (hs : s = S) :
            S.copy s hs = S
            def Subsemiring.mk' {R : Type u} [NonAssocSemiring R] (s : Set R) (sm : Submonoid R) (hm : sm = s) (sa : AddSubmonoid R) (ha : sa = s) :

            Construct a Subsemiring R from a set s, a submonoid sm, and an additive submonoid sa such that x ∈ s ↔ x ∈ sm ↔ x ∈ sa.

            Equations
            • Subsemiring.mk' s sm hm sa ha = { carrier := s, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
            Instances For
              @[simp]
              theorem Subsemiring.coe_mk' {R : Type u} [NonAssocSemiring R] (s : Set R) (sm : Submonoid R) (hm : sm = s) (sa : AddSubmonoid R) (ha : sa = s) :
              (Subsemiring.mk' s sm hm sa ha) = s
              @[simp]
              theorem Subsemiring.mem_mk' {R : Type u} [NonAssocSemiring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubmonoid R} (ha : sa = s) {x : R} :
              x Subsemiring.mk' s sm hm sa ha x s
              @[simp]
              theorem Subsemiring.mk'_toSubmonoid {R : Type u} [NonAssocSemiring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubmonoid R} (ha : sa = s) :
              (Subsemiring.mk' s sm hm sa ha).toSubmonoid = sm
              @[simp]
              theorem Subsemiring.mk'_toAddSubmonoid {R : Type u} [NonAssocSemiring R] {s : Set R} {sm : Submonoid R} (hm : sm = s) {sa : AddSubmonoid R} (ha : sa = s) :
              (Subsemiring.mk' s sm hm sa ha).toAddSubmonoid = sa
              theorem Subsemiring.one_mem {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
              1 s

              A subsemiring contains the semiring's 1.

              theorem Subsemiring.zero_mem {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
              0 s

              A subsemiring contains the semiring's 0.

              theorem Subsemiring.mul_mem {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) {x y : R} :
              x sy sx * y s

              A subsemiring is closed under multiplication.

              theorem Subsemiring.add_mem {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) {x y : R} :
              x sy sx + y s

              A subsemiring is closed under addition.

              A subsemiring of a NonAssocSemiring inherits a NonAssocSemiring structure

              Equations
              @[simp]
              theorem Subsemiring.coe_one {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
              1 = 1
              @[simp]
              theorem Subsemiring.coe_zero {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
              0 = 0
              @[simp]
              theorem Subsemiring.coe_add {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) (x y : s) :
              (x + y) = x + y
              @[simp]
              theorem Subsemiring.coe_mul {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) (x y : s) :
              (x * y) = x * y
              theorem Subsemiring.pow_mem {R : Type u_1} [Semiring R] (s : Subsemiring R) {x : R} (hx : x s) (n : ) :
              x ^ n s
              instance Subsemiring.toSemiring {R : Type u_1} [Semiring R] (s : Subsemiring R) :

              A subsemiring of a Semiring is a Semiring.

              Equations
              • s.toSemiring = Semiring.mk Monoid.npow
              @[simp]
              theorem Subsemiring.coe_pow {R : Type u_1} [Semiring R] (s : Subsemiring R) (x : s) (n : ) :
              (x ^ n) = x ^ n

              A subsemiring of a CommSemiring is a CommSemiring.

              Equations

              The natural ring hom from a subsemiring of semiring R to R.

              Equations
              • s.subtype = { toFun := Subtype.val, map_one' := , map_mul' := , map_zero' := , map_add' := }
              Instances For
                @[simp]
                theorem Subsemiring.coe_subtype {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
                s.subtype = Subtype.val
                theorem Subsemiring.nsmul_mem {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) {x : R} (hx : x s) (n : ) :
                n x s
                @[simp]
                theorem Subsemiring.coe_toSubmonoid {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
                s.toSubmonoid = s
                @[simp]
                theorem Subsemiring.coe_carrier_toSubmonoid {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
                s.carrier = s
                theorem Subsemiring.mem_toAddSubmonoid {R : Type u} [NonAssocSemiring R] {s : Subsemiring R} {x : R} :
                x s.toAddSubmonoid x s
                theorem Subsemiring.coe_toAddSubmonoid {R : Type u} [NonAssocSemiring R] (s : Subsemiring R) :
                s.toAddSubmonoid = s

                The subsemiring R of the semiring R.

                Equations
                • Subsemiring.instTop = { top := let __src := ; let __src_1 := ; { toSubmonoid := __src, add_mem' := , zero_mem' := } }
                @[simp]
                theorem Subsemiring.mem_top {R : Type u} [NonAssocSemiring R] (x : R) :
                @[simp]
                theorem Subsemiring.coe_top {R : Type u} [NonAssocSemiring R] :
                = Set.univ

                The inf of two subsemirings is their intersection.

                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem Subsemiring.coe_inf {R : Type u} [NonAssocSemiring R] (p p' : Subsemiring R) :
                (p p') = p p'
                @[simp]
                theorem Subsemiring.mem_inf {R : Type u} [NonAssocSemiring R] {p p' : Subsemiring R} {x : R} :
                x p p' x p x p'
                def RingHom.domRestrict {R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] {σR : Type u_1} [SetLike σR R] [SubsemiringClass σR R] (f : R →+* S) (s : σR) :
                s →+* S

                Restriction of a ring homomorphism to a subsemiring of the domain.

                Equations
                Instances For
                  @[simp]
                  theorem RingHom.restrict_apply {R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] {σR : Type u_1} [SetLike σR R] [SubsemiringClass σR R] (f : R →+* S) {s : σR} (x : s) :
                  (f.domRestrict s) x = f x
                  def RingHom.eqLocusS {R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (f g : R →+* S) :

                  The subsemiring of elements x : R such that f x = g x

                  Equations
                  • f.eqLocusS g = { carrier := {x : R | f x = g x}, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
                  Instances For
                    @[simp]
                    theorem RingHom.eqLocusS_same {R : Type u} {S : Type v} [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) :
                    f.eqLocusS f =