Documentation

Mathlib.LinearAlgebra.PerfectPairing.Basic

Perfect pairings of modules #

A perfect pairing of two (left) modules may be defined either as:

  1. A bilinear map M × N → R such that the induced maps M → Dual R N and N → Dual R M are both bijective. It follows from this that both M and N are reflexive modules.
  2. A linear equivalence N ≃ Dual R M for which M is reflexive. (It then follows that N is reflexive.)

In this file we provide a PerfectPairing definition corresponding to 1 above, together with logic to connect 1 and 2.

Main definitions #

structure PerfectPairing (R : Type u_1) (M : Type u_2) (N : Type u_3) [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
Type (max (max u_1 u_2) u_3)

A perfect pairing of two (left) modules over a commutative ring.

Instances For
    def PerfectPairing.mkOfInjective {K : Type u_4} {V : Type u_5} {W : Type u_6} [Field K] [AddCommGroup V] [Module K V] [AddCommGroup W] [Module K W] [FiniteDimensional K V] (B : V →ₗ[K] W →ₗ[K] K) (h : Function.Injective B) (h' : Function.Injective B.flip) :

    If the coefficients are a field, and one of the spaces is finite-dimensional, it is sufficient to check only injectivity instead of bijectivity of the bilinear form.

    Equations
    Instances For
      def PerfectPairing.mkOfInjective' {K : Type u_4} {V : Type u_5} {W : Type u_6} [Field K] [AddCommGroup V] [Module K V] [AddCommGroup W] [Module K W] [FiniteDimensional K W] (B : V →ₗ[K] W →ₗ[K] K) (h : Function.Injective B) (h' : Function.Injective B.flip) :

      If the coefficients are a field, and one of the spaces is finite-dimensional, it is sufficient to check only injectivity instead of bijectivity of the bilinear form.

      Equations
      Instances For
        instance PerfectPairing.instFunLike {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
        Equations
        @[simp]
        theorem PerfectPairing.toLin_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) {x : M} :
        p.toLin x = p x
        @[simp]
        theorem PerfectPairing.mk_apply_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {f : M →ₗ[R] N →ₗ[R] R} {hl : Function.Bijective f} {hr : Function.Bijective f.flip} {x : M} :
        { toLin := f, bijectiveLeft := hl, bijectiveRight := hr } x = f x
        def PerfectPairing.flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :

        Given a perfect pairing between M and N, we may interchange the roles of M and N.

        Equations
        • p.flip = { toLin := p.toLin.flip, bijectiveLeft := , bijectiveRight := }
        Instances For
          @[simp]
          theorem PerfectPairing.flip_apply_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) {x : M} {y : N} :
          (p.flip y) x = (p x) y
          @[simp]
          theorem PerfectPairing.flip_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :
          p.flip.flip = p
          def PerfectPairing.toDualLeft {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :

          The linear equivalence from M to Dual R N induced by a perfect pairing.

          Equations
          Instances For
            @[simp]
            theorem PerfectPairing.toDualLeft_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (a : M) :
            p.toDualLeft a = p a
            @[simp]
            theorem PerfectPairing.apply_toDualLeft_symm_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (f : Module.Dual R N) (x : N) :
            (p (p.toDualLeft.symm f)) x = f x
            def PerfectPairing.toDualRight {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :

            The linear equivalence from N to Dual R M induced by a perfect pairing.

            Equations
            • p.toDualRight = p.flip.toDualLeft
            Instances For
              @[simp]
              theorem PerfectPairing.toDualRight_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (a : N) :
              p.toDualRight a = p.flip a
              @[simp]
              theorem PerfectPairing.apply_apply_toDualRight_symm {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (x : M) (f : Module.Dual R M) :
              (p x) (p.toDualRight.symm f) = f x
              theorem PerfectPairing.toDualLeft_of_toDualRight_symm {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (x : M) (f : Module.Dual R M) :
              (p.toDualLeft x) (p.toDualRight.symm f) = f x
              theorem PerfectPairing.toDualRight_symm_toDualLeft {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (x : M) :
              p.toDualRight.symm.dualMap (p.toDualLeft x) = (Module.Dual.eval R M) x
              theorem PerfectPairing.toDualRight_symm_comp_toDualLeft {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :
              p.toDualRight.symm.dualMap ∘ₗ p.toDualLeft = Module.Dual.eval R M
              theorem PerfectPairing.bijective_toDualRight_symm_toDualLeft {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :
              Function.Bijective fun (x : M) => p.toDualRight.symm.dualMap (p.toDualLeft x)
              theorem PerfectPairing.reflexive_left {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :
              theorem PerfectPairing.reflexive_right {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :
              instance PerfectPairing.instEquivLikeDual {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] :
              Equations
              • One or more equations did not get rendered due to their size.
              theorem PerfectPairing.finrank_eq {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) [Module.Finite R M] [Module.Free R M] :
              structure PerfectPairing.IsPerfectCompl {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) (U : Submodule R M) (V : Submodule R N) :

              Given a perfect pairing p between M and N, we say a pair of submodules U in M and V in N are perfectly complementary wrt p if their dual annihilators are complementary, using p to identify M and N with dual spaces.

              Instances For
                theorem PerfectPairing.IsPerfectCompl.flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {p : PerfectPairing R M N} {U : Submodule R M} {V : Submodule R N} (h : p.IsPerfectCompl U V) :
                p.flip.IsPerfectCompl V U
                @[simp]
                theorem PerfectPairing.IsPerfectCompl.flip_iff {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {p : PerfectPairing R M N} {U : Submodule R M} {V : Submodule R N} :
                p.flip.IsPerfectCompl V U p.IsPerfectCompl U V
                @[simp]
                theorem PerfectPairing.IsPerfectCompl.left_top_iff {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {p : PerfectPairing R M N} {V : Submodule R N} :
                p.IsPerfectCompl V V =
                @[simp]
                theorem PerfectPairing.IsPerfectCompl.right_top_iff {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {p : PerfectPairing R M N} {U : Submodule R M} :
                p.IsPerfectCompl U U =

                A reflexive module has a perfect pairing with its dual.

                Equations
                Instances For
                  @[simp]
                  theorem IsReflexive.toPerfectPairingDual_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [Module.IsReflexive R M] {f : Module.Dual R M} {x : M} :
                  (toPerfectPairingDual f) x = f x
                  def LinearEquiv.flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) :

                  For a reflexive module M, an equivalence N ≃ₗ[R] Dual R M naturally yields an equivalence M ≃ₗ[R] Dual R N. Such equivalences are known as perfect pairings.

                  Equations
                  Instances For
                    @[simp]
                    theorem LinearEquiv.coe_toLinearMap_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) :
                    e.flip = (↑e).flip
                    @[simp]
                    theorem LinearEquiv.flip_apply {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) (m : M) (n : N) :
                    (e.flip m) n = (e n) m
                    theorem LinearEquiv.symm_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) :
                    e.flip.symm = e.symm.dualMap ≪≫ₗ (Module.evalEquiv R M).symm
                    theorem LinearEquiv.trans_dualMap_symm_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) :
                    (e ≪≫ₗ e.flip.symm.dualMap) = Module.Dual.eval R N

                    If N is in perfect pairing with M, then it is reflexive.

                    @[simp]
                    theorem LinearEquiv.flip_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) (h : Module.IsReflexive R N := ) :
                    e.flip.flip = e
                    def LinearEquiv.toPerfectPairing {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) :

                    If M is reflexive then a linear equivalence N ≃ Dual R M is a perfect pairing.

                    Equations
                    • e.toPerfectPairing = { toLin := e, bijectiveLeft := , bijectiveRight := }
                    Instances For
                      @[simp]
                      theorem LinearEquiv.toPerfectPairing_toLin {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) :
                      e.toPerfectPairing.toLin = e
                      def PerfectPairing.dual {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (p : PerfectPairing R M N) :

                      A perfect pairing induces a perfect pairing between dual spaces.

                      Equations
                      Instances For
                        @[simp]
                        theorem Submodule.dualCoannihilator_map_linearEquiv_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) (p : Submodule R M) :
                        (map e.flip p).dualCoannihilator = map e.symm p.dualAnnihilator
                        @[simp]
                        theorem Submodule.map_dualAnnihilator_linearEquiv_flip_symm {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) (p : Submodule R N) :
                        map e.flip.symm p.dualAnnihilator = (map e p).dualCoannihilator
                        @[simp]
                        theorem Submodule.map_dualCoannihilator_linearEquiv_flip {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) (p : Submodule R (Module.Dual R M)) :
                        map e.flip p.dualCoannihilator = (map e.symm p).dualAnnihilator
                        @[simp]
                        theorem Submodule.dualAnnihilator_map_linearEquiv_flip_symm {R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [Module.IsReflexive R M] (e : N ≃ₗ[R] Module.Dual R M) (p : Submodule R (Module.Dual R N)) :
                        (map e.flip.symm p).dualAnnihilator = map e p.dualCoannihilator