Matrix algebra is an Azumaya algebra over R #
In this file we prove that finite dimesional matrix algebra Matrix n n R
over R
is an Azumaya algebra where R
is a commutative ring.
Main Results #
IsAzumaya.Matrix
: Finite dimensional matrix algebra overR
is Azumaya.
@[reducible, inline]
abbrev
AlgHom.mulLeftRightMatrix_inv
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
:
AlgHom.mulLeftRight
for matrix algebra sends basis Eᵢⱼ⊗Eₖₗ to
the map f : Eₛₜ ↦ Eᵢⱼ * Eₛₜ * Eₖₗ = δⱼₛδₜₖEᵢₗ
, therefore we construct the inverse
by sending f
to ∑ᵢₗₛₜ f(Eₛₜ)ᵢₗ • Eᵢₛ⊗Eₜₗ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgHom.mulLeftRightMatrix.inv_comp
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
:
theorem
AlgHom.mulLeftRightMatrix.comp_inv
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
:
theorem
IsAzumaya.matrix
(R : Type u_1)
(n : Type u_2)
[CommSemiring R]
[Fintype n]
[DecidableEq n]
[Nonempty n]
:
A nontrivial matrix ring over R
is an Azumaya algebra over R
.