Products of associated, prime, and irreducible elements. #
This file contains some theorems relating definitions in Algebra.Associated
and products of multisets, finsets, and finsupps.
theorem
Prime.exists_mem_multiset_dvd
{α : Type u_1}
[CommMonoidWithZero α]
{p : α}
(hp : Prime p)
{s : Multiset α}
:
theorem
Prime.exists_mem_multiset_map_dvd
{α : Type u_1}
{β : Type u_2}
[CommMonoidWithZero α]
{p : α}
(hp : Prime p)
{s : Multiset β}
{f : β → α}
:
p ∣ (Multiset.map f s).prod → ∃ a ∈ s, p ∣ f a
theorem
Prime.exists_mem_finset_dvd
{α : Type u_1}
{β : Type u_2}
[CommMonoidWithZero α]
{p : α}
(hp : Prime p)
{s : Finset β}
{f : β → α}
:
theorem
Prod.associated_iff
{M : Type u_5}
{N : Type u_6}
[Monoid M]
[Monoid N]
{x z : M × N}
:
Associated x z ↔ Associated x.1 z.1 ∧ Associated x.2 z.2
theorem
Associated.prod
{M : Type u_5}
[CommMonoid M]
{ι : Type u_6}
(s : Finset ι)
(f g : ι → M)
(h : ∀ i ∈ s, Associated (f i) (g i))
:
Associated (∏ i ∈ s, f i) (∏ i ∈ s, g i)
theorem
exists_associated_mem_of_dvd_prod
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
(hp : Prime p)
{s : Multiset α}
:
(∀ r ∈ s, Prime r) → p ∣ s.prod → ∃ q ∈ s, Associated p q
theorem
divisor_closure_eq_closure
{α : Type u_1}
[CancelCommMonoidWithZero α]
(x y : α)
(hxy : x * y ∈ Submonoid.closure {r : α | IsUnit r ∨ Prime r})
:
x ∈ Submonoid.closure {r : α | IsUnit r ∨ Prime r}
Let x, y ∈ α. If x * y can be written as a product of units and prime elements, then x can be written as a product of units and prime elements.
theorem
Multiset.prod_primes_dvd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[(a : α) → DecidablePred (Associated a)]
{s : Multiset α}
(n : α)
(h : ∀ a ∈ s, Prime a)
(div : ∀ a ∈ s, a ∣ n)
(uniq : ∀ (a : α), Multiset.countP (Associated a) s ≤ 1)
:
s.prod ∣ n
theorem
Finset.prod_primes_dvd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Subsingleton αˣ]
{s : Finset α}
(n : α)
(h : ∀ a ∈ s, Prime a)
(div : ∀ a ∈ s, a ∣ n)
:
∏ p ∈ s, p ∣ n
theorem
Associates.prod_mk
{α : Type u_1}
[CommMonoid α]
{p : Multiset α}
:
(Multiset.map Associates.mk p).prod = Associates.mk p.prod
theorem
Associates.finset_prod_mk
{α : Type u_1}
{β : Type u_2}
[CommMonoid α]
{p : Finset β}
{f : β → α}
:
∏ i ∈ p, Associates.mk (f i) = Associates.mk (∏ i ∈ p, f i)
theorem
Associates.rel_associated_iff_map_eq_map
{α : Type u_1}
[CommMonoid α]
{p q : Multiset α}
:
Multiset.Rel Associated p q ↔ Multiset.map Associates.mk p = Multiset.map Associates.mk q
theorem
Associates.prod_le_prod
{α : Type u_1}
[CommMonoid α]
{p q : Multiset (Associates α)}
(h : p ≤ q)
:
p.prod ≤ q.prod
theorem
Associates.exists_mem_multiset_le_of_prime
{α : Type u_1}
[CancelCommMonoidWithZero α]
{s : Multiset (Associates α)}
{p : Associates α}
(hp : Prime p)
:
theorem
Multiset.prod_ne_zero_of_prime
{α : Type u_1}
[CancelCommMonoidWithZero α]
[Nontrivial α]
(s : Multiset α)
(h : ∀ x ∈ s, Prime x)
:
s.prod ≠ 0
theorem
Prime.dvd_finset_prod_iff
{α : Type u_1}
{M : Type u_5}
[CommMonoidWithZero M]
{S : Finset α}
{p : M}
(pp : Prime p)
(g : α → M)
: