Documentation

Mathlib.Algebra.BigOperators.Associated

Products of associated, prime, and irreducible elements. #

This file contains some theorems relating definitions in Algebra.Associated and products of multisets, finsets, and finsupps.

theorem Prime.exists_mem_multiset_dvd {α : Type u_1} [CommMonoidWithZero α] {p : α} (hp : Prime p) {s : Multiset α} :
p Multiset.prod s∃ a ∈ s, p a
theorem Prime.exists_mem_multiset_map_dvd {α : Type u_1} {β : Type u_2} [CommMonoidWithZero α] {p : α} (hp : Prime p) {s : Multiset β} {f : βα} :
p Multiset.prod (Multiset.map f s)∃ a ∈ s, p f a
theorem Prime.exists_mem_finset_dvd {α : Type u_1} {β : Type u_2} [CommMonoidWithZero α] {p : α} (hp : Prime p) {s : Finset β} {f : βα} :
p Finset.prod s f∃ i ∈ s, p f i
theorem Prod.associated_iff {M : Type u_5} {N : Type u_6} [Monoid M] [Monoid N] {x : M × N} {z : M × N} :
Associated x z Associated x.1 z.1 Associated x.2 z.2
theorem Associated.prod {M : Type u_5} [CommMonoid M] {ι : Type u_6} (s : Finset ι) (f : ιM) (g : ιM) (h : is, Associated (f i) (g i)) :
Associated (Finset.prod s fun (i : ι) => f i) (Finset.prod s fun (i : ι) => g i)
theorem exists_associated_mem_of_dvd_prod {α : Type u_1} [CancelCommMonoidWithZero α] {p : α} (hp : Prime p) {s : Multiset α} :
(rs, Prime r)p Multiset.prod s∃ q ∈ s, Associated p q
theorem Multiset.prod_primes_dvd {α : Type u_1} [CancelCommMonoidWithZero α] [(a : α) → DecidablePred (Associated a)] {s : Multiset α} (n : α) (h : as, Prime a) (div : as, a n) (uniq : ∀ (a : α), Multiset.countP (Associated a) s 1) :
theorem Finset.prod_primes_dvd {α : Type u_1} [CancelCommMonoidWithZero α] [Unique αˣ] {s : Finset α} (n : α) (h : as, Prime a) (div : as, a n) :
(Finset.prod s fun (p : α) => p) n
theorem Associates.finset_prod_mk {α : Type u_1} {β : Type u_2} [CommMonoid α] {p : Finset β} {f : βα} :
(Finset.prod p fun (i : β) => Associates.mk (f i)) = Associates.mk (Finset.prod p fun (i : β) => f i)
theorem Associates.rel_associated_iff_map_eq_map {α : Type u_1} [CommMonoid α] {p : Multiset α} {q : Multiset α} :
Multiset.Rel Associated p q Multiset.map Associates.mk p = Multiset.map Associates.mk q
theorem Associates.prod_eq_one_iff {α : Type u_1} [CommMonoid α] {p : Multiset (Associates α)} :
Multiset.prod p = 1 ap, a = 1
theorem Associates.exists_mem_multiset_le_of_prime {α : Type u_1} [CancelCommMonoidWithZero α] {s : Multiset (Associates α)} {p : Associates α} (hp : Prime p) :
p Multiset.prod s∃ a ∈ s, p a
theorem Multiset.prod_ne_zero_of_prime {α : Type u_1} [CancelCommMonoidWithZero α] [Nontrivial α] (s : Multiset α) (h : xs, Prime x) :
theorem Prime.dvd_finset_prod_iff {α : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {S : Finset α} {p : M} (pp : Prime p) (g : αM) :
p Finset.prod S g ∃ a ∈ S, p g a
theorem Prime.not_dvd_finset_prod {α : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {S : Finset α} {p : M} (pp : Prime p) {g : αM} (hS : aS, ¬p g a) :
theorem Prime.dvd_finsupp_prod_iff {α : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {f : α →₀ M} {g : αM} {p : } (pp : Prime p) :
p Finsupp.prod f g ∃ a ∈ f.support, p g a (f a)
theorem Prime.not_dvd_finsupp_prod {α : Type u_1} {M : Type u_5} [CommMonoidWithZero M] {f : α →₀ M} {g : αM} {p : } (pp : Prime p) (hS : af.support, ¬p g a (f a)) :