Documentation

Mathlib.Algebra.BigOperators.Finsupp.Fin

Finsupp.sum and Finsupp.prod over Fin #

This file contains theorems relevant to big operators on finitely supported functions over Fin.

theorem Finsupp.sum_cons {M : Type u_1} [AddCommMonoid M] (n : ) (σ : Fin n →₀ M) (i : M) :
((cons i σ).sum fun (x : Fin (n + 1)) (e : M) => e) = i + σ.sum fun (x : Fin n) (e : M) => e
theorem Finsupp.sum_cons' {M : Type u_1} {N : Type u_2} [Zero M] [AddCommMonoid N] (n : ) (σ : Fin n →₀ M) (i : M) (f : Fin (n + 1)MN) (h : ∀ (x : Fin (n + 1)), f x 0 = 0) :
(cons i σ).sum f = f 0 i + σ.sum (Fin.tail f)
noncomputable def finTwoArrowEquiv' (X : Type u_1) [Zero X] :
(Fin 2 →₀ X) X × X

The space of finitely supported functions Fin 2 →₀ α is equivalent to α × α. See also finTwoArrowEquiv.

Equations
Instances For
    @[simp]
    theorem finTwoArrowEquiv'_symm_apply (X : Type u_1) [Zero X] :
    (finTwoArrowEquiv' X).symm = fun (x : X × X) => Finsupp.ofSupportFinite ![x.1, x.2]
    @[simp]
    theorem finTwoArrowEquiv'_apply (X : Type u_1) [Zero X] :
    (finTwoArrowEquiv' X) = fun (x : Fin 2 →₀ X) => (x 0, x 1)
    theorem finTwoArrowEquiv'_sum_eq {d : × } :
    (((finTwoArrowEquiv' ).symm d).sum fun (x : Fin 2) (n : ) => n) = d.1 + d.2