Results about big operators over intervals #
We prove results about big operators over intervals.
theorem
Finset.mul_prod_Ico_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.add_sum_Ico_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.prod_Ico_mul_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.sum_Ico_add_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.mul_prod_Ioc_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.add_sum_Ioc_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.prod_Ioc_mul_eq_prod_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.sum_Ioc_add_eq_sum_Icc
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
{a b : α}
[LocallyFiniteOrder α]
(h : a ≤ b)
:
theorem
Finset.mul_prod_Ioi_eq_prod_Ici
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.add_sum_Ioi_eq_sum_Ici
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.prod_Ioi_mul_eq_prod_Ici
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.sum_Ioi_add_eq_sum_Ici
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
[LocallyFiniteOrderTop α]
(a : α)
:
theorem
Finset.mul_prod_Iio_eq_prod_Iic
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.add_sum_Iio_eq_sum_Iic
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.prod_Iio_mul_eq_prod_Iic
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[CommMonoid M]
{f : α → M}
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.sum_Iio_add_eq_sum_Iic
{α : Type u_1}
{M : Type u_2}
[PartialOrder α]
[AddCommMonoid M]
{f : α → M}
[LocallyFiniteOrderBot α]
(a : α)
:
theorem
Finset.prod_prod_Ioi_mul_eq_prod_prod_off_diag
{α : Type u_1}
{M : Type u_2}
[Fintype α]
[LinearOrder α]
[LocallyFiniteOrderTop α]
[LocallyFiniteOrderBot α]
[CommMonoid M]
(f : α → α → M)
:
theorem
Finset.sum_sum_Ioi_add_eq_sum_sum_off_diag
{α : Type u_1}
{M : Type u_2}
[Fintype α]
[LinearOrder α]
[LocallyFiniteOrderTop α]
[LocallyFiniteOrderBot α]
[AddCommMonoid M]
(f : α → α → M)
:
theorem
Finset.prod_Ico_add'
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
theorem
Finset.sum_Ico_add'
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
theorem
Finset.prod_Ico_add
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
theorem
Finset.sum_Ico_add
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
@[simp]
theorem
Finset.prod_Ico_add_right_sub_eq
{α : Type u_1}
{M : Type u_2}
[CommMonoid M]
{f : α → M}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[Sub α]
[OrderedSub α]
(a b c : α)
:
@[simp]
theorem
Finset.sum_Ico_add_right_sub_eq
{α : Type u_1}
{M : Type u_2}
[AddCommMonoid M]
{f : α → M}
[OrderedCancelAddCommMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[Sub α]
[OrderedSub α]
(a b c : α)
: