Documentation

Mathlib.Algebra.Order.BigOperators.Group.LocallyFinite

Big operators indexed by intervals #

This file proves lemmas about ∏ x ∈ Ixx a b, f x and ∑ x ∈ Ixx a b, f x.

theorem Finset.left_mul_prod_Ioc {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
f a * xIoc a b, f x = xIcc a b, f x
theorem Finset.left_add_sum_Ioc {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
f a + xIoc a b, f x = xIcc a b, f x
theorem Finset.prod_Ioc_mul_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
(∏ xIoc a b, f x) * f a = xIcc a b, f x
theorem Finset.sum_Ioc_add_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
xIoc a b, f x + f a = xIcc a b, f x
theorem Finset.right_mul_prod_Ico {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
f b * xIco a b, f x = xIcc a b, f x
theorem Finset.right_add_sum_Ico {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
f b + xIco a b, f x = xIcc a b, f x
theorem Finset.prod_Ico_mul_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
(∏ xIco a b, f x) * f b = xIcc a b, f x
theorem Finset.sum_Ico_add_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a b) :
xIco a b, f x + f b = xIcc a b, f x
theorem Finset.left_mul_prod_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
f a * xIoo a b, f x = xIco a b, f x
theorem Finset.left_add_sum_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
f a + xIoo a b, f x = xIco a b, f x
theorem Finset.prod_Ioo_mul_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
(∏ xIoo a b, f x) * f a = xIco a b, f x
theorem Finset.sum_Ioo_add_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
xIoo a b, f x + f a = xIco a b, f x
theorem Finset.right_mul_prod_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
f b * xIoo a b, f x = xIoc a b, f x
theorem Finset.right_add_sum_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
f b + xIoo a b, f x = xIoc a b, f x
theorem Finset.prod_Ioo_mul_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
(∏ xIoo a b, f x) * f b = xIoc a b, f x
theorem Finset.sum_Ioo_add_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a b : α} [LocallyFiniteOrder α] (h : a < b) :
xIoo a b, f x + f b = xIoc a b, f x
theorem Finset.left_mul_prod_Ioi {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
f a * xIoi a, f x = xIci a, f x
theorem Finset.left_add_sum_Ioi {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
f a + xIoi a, f x = xIci a, f x
theorem Finset.prod_Ioi_mul_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
(∏ xIoi a, f x) * f a = xIci a, f x
theorem Finset.sum_Ioi_add_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
xIoi a, f x + f a = xIci a, f x
theorem Finset.right_mul_prod_Iio {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
f a * xIio a, f x = xIic a, f x
theorem Finset.right_add_sum_Iio {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
f a + xIio a, f x = xIic a, f x
theorem Finset.prod_Iio_mul_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
(∏ xIio a, f x) * f a = xIic a, f x
theorem Finset.sum_Iio_add_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
xIio a, f x + f a = xIic a, f x