Documentation

Mathlib.Algebra.Order.BigOperators.Group.LocallyFinite

Big operators indexed by intervals #

This file proves lemmas about ∏ x ∈ Ixx a b, f x and ∑ x ∈ Ixx a b, f x.

theorem Finset.left_add_sum_Ioc {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
f a + xFinset.Ioc a b, f x = xFinset.Icc a b, f x
theorem Finset.left_mul_prod_Ioc {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
f a * xFinset.Ioc a b, f x = xFinset.Icc a b, f x
theorem Finset.sum_Ioc_add_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
xFinset.Ioc a b, f x + f a = xFinset.Icc a b, f x
theorem Finset.prod_Ioc_mul_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
(∏ xFinset.Ioc a b, f x) * f a = xFinset.Icc a b, f x
theorem Finset.right_add_sum_Ico {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
f b + xFinset.Ico a b, f x = xFinset.Icc a b, f x
theorem Finset.right_mul_prod_Ico {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
f b * xFinset.Ico a b, f x = xFinset.Icc a b, f x
theorem Finset.sum_Ico_add_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
xFinset.Ico a b, f x + f b = xFinset.Icc a b, f x
theorem Finset.prod_Ico_mul_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a b) :
(∏ xFinset.Ico a b, f x) * f b = xFinset.Icc a b, f x
theorem Finset.left_add_sum_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
f a + xFinset.Ioo a b, f x = xFinset.Ico a b, f x
theorem Finset.left_mul_prod_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
f a * xFinset.Ioo a b, f x = xFinset.Ico a b, f x
theorem Finset.sum_Ioo_add_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
xFinset.Ioo a b, f x + f a = xFinset.Ico a b, f x
theorem Finset.prod_Ioo_mul_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
(∏ xFinset.Ioo a b, f x) * f a = xFinset.Ico a b, f x
theorem Finset.right_add_sum_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
f b + xFinset.Ioo a b, f x = xFinset.Ioc a b, f x
theorem Finset.right_mul_prod_Ioo {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
f b * xFinset.Ioo a b, f x = xFinset.Ioc a b, f x
theorem Finset.sum_Ioo_add_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
xFinset.Ioo a b, f x + f b = xFinset.Ioc a b, f x
theorem Finset.prod_Ioo_mul_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} {a : α} {b : α} [LocallyFiniteOrder α] (h : a < b) :
(∏ xFinset.Ioo a b, f x) * f b = xFinset.Ioc a b, f x
theorem Finset.left_add_sum_Ioi {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
f a + xFinset.Ioi a, f x = xFinset.Ici a, f x
theorem Finset.left_mul_prod_Ioi {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
f a * xFinset.Ioi a, f x = xFinset.Ici a, f x
theorem Finset.sum_Ioi_add_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
xFinset.Ioi a, f x + f a = xFinset.Ici a, f x
theorem Finset.prod_Ioi_mul_left {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderTop α] (a : α) :
(∏ xFinset.Ioi a, f x) * f a = xFinset.Ici a, f x
theorem Finset.right_add_sum_Iio {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
f a + xFinset.Iio a, f x = xFinset.Iic a, f x
theorem Finset.right_mul_prod_Iio {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
f a * xFinset.Iio a, f x = xFinset.Iic a, f x
theorem Finset.sum_Iio_add_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [AddCommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
xFinset.Iio a, f x + f a = xFinset.Iic a, f x
theorem Finset.prod_Iio_mul_right {α : Type u_1} {β : Type u_2} [PartialOrder α] [CommMonoid β] {f : αβ} [LocallyFiniteOrderBot α] (a : α) :
(∏ xFinset.Iio a, f x) * f a = xFinset.Iic a, f x