Documentation

Mathlib.Algebra.BigOperators.Option

Lemmas about products and sums over finite sets in Option α #

In this file we prove formulas for products and sums over Finset.insertNone s and Finset.eraseNone s.

theorem Finset.prod_insertNone {α : Type u_1} {M : Type u_2} [CommMonoid M] (f : Option αM) (s : Finset α) :
Eq ((DFunLike.coe insertNone s).prod fun (x : Option α) => f x) (HMul.hMul (f Option.none) (s.prod fun (x : α) => f (Option.some x)))
theorem Finset.sum_insertNone {α : Type u_1} {M : Type u_2} [AddCommMonoid M] (f : Option αM) (s : Finset α) :
Eq ((DFunLike.coe insertNone s).sum fun (x : Option α) => f x) (HAdd.hAdd (f Option.none) (s.sum fun (x : α) => f (Option.some x)))
theorem Finset.mul_prod_eq_prod_insertNone {α : Type u_1} {M : Type u_2} [CommMonoid M] (f : αM) (x : M) (s : Finset α) :
Eq (HMul.hMul x (s.prod fun (i : α) => f i)) ((DFunLike.coe insertNone s).prod fun (i : Option α) => i.elim x f)
theorem Finset.add_sum_eq_sum_insertNone {α : Type u_1} {M : Type u_2} [AddCommMonoid M] (f : αM) (x : M) (s : Finset α) :
Eq (HAdd.hAdd x (s.sum fun (i : α) => f i)) ((DFunLike.coe insertNone s).sum fun (i : Option α) => i.elim x f)
theorem Finset.prod_eraseNone {α : Type u_1} {M : Type u_2} [CommMonoid M] (f : αM) (s : Finset (Option α)) :
Eq ((DFunLike.coe eraseNone s).prod fun (x : α) => f x) (s.prod fun (x : Option α) => Option.elim' 1 f x)
theorem Finset.sum_eraseNone {α : Type u_1} {M : Type u_2} [AddCommMonoid M] (f : αM) (s : Finset (Option α)) :
Eq ((DFunLike.coe eraseNone s).sum fun (x : α) => f x) (s.sum fun (x : Option α) => Option.elim' 0 f x)