The cocartesian monoidal category structure on commutative R
-algebras #
This file provides the cocartesian-monoidal category structure on CommAlgCat R
constructed
explicitly using the tensor product.
The explicit cocone with tensor products as the fibered coproduct in CommAlgCat
.
Equations
Instances For
@[simp]
@[simp]
@[simp]
Verify that the pushout cocone is indeed the colimit.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The initial object of CommAlgCat R
is R
as an algebra over itself.
Equations
- CommAlgCat.isInitialSelf = CategoryTheory.Limits.IsInitial.ofUniqueHom (fun (A : CommAlgCat R) => CommAlgCat.ofHom (Algebra.ofId R ↑A)) ⋯
Instances For
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
@[simp]
theorem
CommAlgCat.tensorHom_hom
{R : Type u}
[CommRing R]
{A B C D : CommAlgCat R}
(f : A ⟶ C)
(g : B ⟶ D)
:
@[simp]
theorem
CommAlgCat.whiskerRight_hom
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(C : CommAlgCat R)
(f : A ⟶ B)
:
@[simp]
theorem
CommAlgCat.whiskerLeft_hom
{R : Type u}
[CommRing R]
{A B : CommAlgCat R}
(C : CommAlgCat R)
(f : A ⟶ B)
:
@[simp]
theorem
CommAlgCat.associator_hom_hom
{R : Type u}
[CommRing R]
(A B C : CommAlgCat R)
:
Hom.hom (CategoryTheory.MonoidalCategoryStruct.associator A B C).hom = ↑(Algebra.TensorProduct.assoc R R ↑A ↑B ↑C)
@[simp]
theorem
CommAlgCat.associator_inv_hom
{R : Type u}
[CommRing R]
(A B C : CommAlgCat R)
:
Hom.hom (CategoryTheory.MonoidalCategoryStruct.associator A B C).inv = ↑(Algebra.TensorProduct.assoc R R ↑A ↑B ↑C).symm
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
@[simp]
@[simp]
theorem
CommAlgCat.lift_unop_hom
{R : Type u}
[CommRing R]
{A B C : (CommAlgCat R)ᵒᵖ}
(f : C ⟶ A)
(g : C ⟶ B)
: