The category of abelian groups is abelian #
In the category of abelian groups, every monomorphism is normal.
Instances For
In the category of abelian groups, every epimorphism is normal.
Instances For
The category of abelian groups is abelian.
theorem
AddCommGroupCat.exact_iff
{X : AddCommGroupCat}
{Y : AddCommGroupCat}
{Z : AddCommGroupCat}
(f : X ⟶ Y)
(g : Y ⟶ Z)
:
instance
AddCommGroupCat.instPreservesFiniteLimitsFunctorAddCommGroupCatInstAddCommGroupCatLargeCategoryCategoryColimHasColimitsOfShapeOfHasColimitsOfSizeInstHasColimitsOfSizeAddCommGroupCatMaxInstAddCommGroupCatLargeCategory_3
{J : Type u}
[CategoryTheory.SmallCategory J]
[CategoryTheory.IsFiltered J]
:
CategoryTheory.Limits.PreservesFiniteLimits CategoryTheory.Limits.colim
The category of abelian groups satisfies Grothedieck's Axiom AB5.