Documentation

Mathlib.CategoryTheory.Abelian.FunctorCategory

If D is abelian, then the functor category C ⥤ D is also abelian. #

def CategoryTheory.Abelian.FunctorCategory.coimageObjIso {C : Type u} [Category.{v, u} C] {D : Type w} [Category.{z, w} D] [Abelian D] {F G : Functor C D} (α : F G) (X : C) :
(Abelian.coimage α).obj X Abelian.coimage (α.app X)

The abelian coimage in a functor category can be calculated componentwise.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def CategoryTheory.Abelian.FunctorCategory.imageObjIso {C : Type u} [Category.{v, u} C] {D : Type w} [Category.{z, w} D] [Abelian D] {F G : Functor C D} (α : F G) (X : C) :
    (Abelian.image α).obj X Abelian.image (α.app X)

    The abelian image in a functor category can be calculated componentwise.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For